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A hybrid multi-criteria
decision-making model for

optimal coal blending
Shankar Chakraborty and Ankan Mitra

Department of Production Engineering, Jadavpur University, Kolkata, India

Abstract
Purpose – The purpose of this paper is thus to develop a hybrid decision-making model for optimal coal
blending strategy. Coal is one of the major resources contributing to generation of electricity and
anthropogenic carbon-dioxide emission. Being formed from dead plant matter, it undergoes a series of
morphological changes from peat to lignite, and finally to anthracite. Because of non-uniform distribution of
coal over the whole earth and continuous variation in its compositions, coals mined from different parts of the
world have widely varying properties. Hence, it requires an ideal blending strategy such that the coking coal
having the optimal combination of all of its properties can be used for maximum benefit to the steel making
process.
Design/methodology/approach – In this paper, a multi-criteria decision-making approach is
proposed while integrating preference ranking organization method for enrichment of evaluations
(PROMETHEE II and V) and geometrical analysis for interactive aid (GAIA) method to aid in
formulating an optimal coal blending strategy. The optimal decision is arrived at while taking into
account some practical implications associated with blending of coal, such as coal price from different
reserves.
Findings – Different grades of coal are ranked from the best to the worst to find out the composition of
constituent coals in the final blending process. Coals from the mines of two different geographical regions are
considered here so as to prove the applicability of the proposed model. Adoption of this hybrid decision-
making model would subsequently improve the performance of coal after blending and help in addressing
some sustainability issues, like less pollution.
Originality/value – As this model takes into account the purchase price of coals from different reserves, it
is always expected to provide more realistic solutions. Thus, it would be beneficial to deploy this decision-
making model to different blending optimization problems in other spheres of a manufacturing industry. This
model can further accommodate some more realistic criteria, such as availability of coal in different reserves
as a topic of future research work.

Keywords Decision making, Linear programming, Cost analysis

Paper type Research paper

1. Introduction
Coal, being a non-renewable resource of energy, is formed from dead flora, buried under the
earth millions of years ago, because of the effects of varying temperature and pressure. Coal
is elementarily composed of carbon, oxygen, hydrogen, nitrogen, moisture and other non-
combustible inorganic matters. Thus, the natural constituents of coal can be broadly
classified into organic matter and inorganic matter. The organic constituents are generally
called as macerals, which are analogous to minerals in inorganic rocks. The amount of
macerals and volatile matter in a particular coal specimen is largely influenced by the post
depositional chemical environmental conditions, exposed to the acid peat (Francis, 1954).
Thus, its composition, sulphur content, calorific value etc. vary from one coal reserve to
another coal reserve.
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Coal blending is the process of mixing coals in a prudent way after coal has been mined to
achieve quality characteristics which are desirable for the coal’s intended application, e.g.
steam generation in thermal power plant, coking in steel production etc. The quality
characteristics that are most important in blending usually differ from one mine site to
another, and also depend on how the coal seams vary in quality and their final intended use.
For thermal power plant applications, the most desirable coal properties often include ash
content, volatile matter, total sulphur content and gross calorific value. On the other hand, for
coking coals, some other additional characteristics, like crucible swelling number, fluidity etc.
are required. Blending of coal is highly practiced for combustion and gasification in thermal
power plants which is quite different from blending for coke production in steel industry.

Generally, in coal blending process, any two coals cannot be just mixed. For successful
blending, it requires a thorough understanding of the interaction of various inorganic
components of coals in the blend process and how it affects the ash behaviour, including its
emissivity and thermal conductivity. In a coal blending process, various objectives are
simultaneously fulfilled, like reduced production cost, low grade coals can be mixed with
better grade coal, improved calorific value, increased combustion efficiency and reduced
carbon loss. A proper coal blend would also ensure reduction in submicron particulate
emission (Zhou et al., 2010). To have an effective coal blend, various optimization tools can
be employed to determine the proportion of the constituent coals in the final blend. However,
before blending of coals, various parameters, like origin of the constituent coals, their
inorganic and organic compositions, their combustion and grindability properties, variation
in ash contents etc. need to be studied because it has been usually observed that coals with
similar burning profile are expected to behave well in full scale boilers (Sloss, 2014).

Quality of raw coal is primarily determined based on several factors and also on its
various physical properties, such as ash content, sulphur content, moisture content, calorific
value, maximum reflectance, dilatation, free swelling index. Some of these characteristics of
raw coal are beneficial for its end use while always requiring their higher values, whereas,
some of them are non-beneficial in nature preferred with their lower values. Like, lower the
ash content, better is the quality of coal, as it is the non-combustible residue left after
burning of coal. On the other hand, higher the calorific value of coal, better is the coal
suitable for the coking purpose. When heated in absence of air, coking coal has usually the
ability to soften, swell and form a coherent coke structure. This property of coking coal is
known as dilatation. Hence, higher the value of dilatation, better is the coking coal. Another
important property which plays a crucial role in ranking of coal is its mean maximum
reflectance value. The reflectance of macerals is a measure of the metamorphism or
geochemical maturity that a coal has undergone. As its measurement can also be performed
on oxidized coal samples, it is therefore an excellent exploration tool for determination of
ranks of the considered coals (Whitacre et al., 2014).

One of the major applications of coal is in the form of coke, during steel production. The
main technological challenge often faced by the engineers is to obtain a coking coal having a
uniform set of properties. High variability in different properties of coal imposes a problem
to have an ideal coking coal with all of its properties as desired for most efficient steel
production. Various environmental constraints also restrict the application of different coal
grades which would often result in high emission of potential pollutants after use.
Simultaneously, the alarming depletion of good quality raw coal leads to uncertain
availability of several grades of coal from different mines.

This gives rise to coal blending process, which aims at solving several challenges, such as
reducing the variability of the processed coal after beneficiation, reducing raw material cost,
providing the required characteristics to the end products etc. Blending can take place at several
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points on a coal chain (Pearson, 1980), and Figure 1 provides an idea about the typical blending
points in a coal chain. Blending is usually performed by stockpile stacking, which ensures
homogeneity of the final blended material. Several other blending methods are also adopted by
different coal industries, such as blending in bed, blending by ground hopper and blending on
moving belt. In a typical coal blending process, the possibilities of having different blending
constituents are quite large and it becomes a complicated task for an engineer to determine the
optimal combination of different constituents in the final coal blend. These blending decisions
are often based on trial and errormethod, and heuristics-based solutions are also sorted.

In this paper, a hybrid multi-criteria decision-making model is proposed while integrating
preference ranking organization method for enrichment of evaluations (PROMETHEE) and
geometrical analysis for interactive aid (GAIA) approach to determine the optimal
compositions of constituent coals in the coal blending process while considering coals coming
out of the mines in India and the USA. The research question addressed in this paper is to
explore the possibility of developing a decision-making model which would provide a
realistic decision with respect to a practically feasible blending ratio. This topic is important
because when blending of coal comes into question, several other constraints (excluding
material characteristics), such as availability and price need to be addressed simultaneously
to make a pragmatic decision. Coal contributes to generation of electricity (secondary source
of energy) as well as acts as a major source of carbon dioxide emission. Thus, its use has both
positive and negative impacts on the society. As coal is primarily used as coking coal in steel
production plants, it becomes necessary to look upon the benefits and harms it causes to the
society. The developed model takes into account both the beneficial and non-beneficial
characteristics of coal, as well as economic constraints, while providing an optimal blending
decision. In this paper, various properties of coal and their influences on the performance of
the coal blend are also studied. The adopted PROMETHEE-GAIA method is a combination
of mathematical and visual aids, which is quite easy to interpret while incorporating the
mathematical intricacies of uncertainty and randomness.

2. Literature review
2.1 Optimization of coal blending process
Shih and Frey (1995) developed a multi-objective chance-constrained optimization model for
coal blending optimization while considering variability in various coal characteristics
(sulphur content, ash content and heating value). Lyu et al. (1995) presented a goal
programming model and implemented it as an effective decision support tool for coal
stockyard managers to help in the coal blending process. Initial inventory, heating value,
sulphur content, volatile matter and ash content were considered as the input parameters to
the developed model. Wu et al. (1999) developed a model-based expert control strategy using
back propagation artificial neural network for controlling the coal blending process in iron
and steel plants. Yin et al. (2000) integrated a mixed-discrete variable optimization model
with artificial neural network to solve a non-linear programming problem for arriving at the
optimal coal blending decision. Various coal properties, like heating value, volatile matter,

Figure 1.
Typical blending

points in a coal chain
(Pearson, 1980)
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sulphur content, moisture content, ash yield and ignition temperature were taken into
account while developing the corresponding optimization problem. Erarslan et al. (2001)
developed a linear programming (LP) model to determine the optimal coal blend
composition with respect to quality and quantity (heat content and grain size). Rushdi et al.
(2004) conducted an experimental study to investigate the effect of coal blending process on
ash deposition after combustion. Exhaustive data from proximate analysis, ultimate
analysis and ash analysis of the considered coals were utilized for the experimental study.

While considering fuzzy and non-linear characteristics of blended coal’s slagging, Liao
et al. (2005) presented an optimization model of power coal blending for achieving the
minimum price of the blended coal. The proposed model was later solved using fuzzy neural
network and genetic algorithm (GA). Liao and Ma (2006) applied a fuzzy artificial neural
network-based chaos optimization algorithm for optimal coal blending, taking into
consideration the slagging characteristics of blending coal as a constraint. Gupta et al. (2007)
presented a coal blending model while taking the relationships between coal and coke quality
parameters into consideration. The proposed model could provide a least cost coal blend for
the desired coal blend quality with respect to ash content, volatile matter, mean maximum
reflectance, coke strength and ash content, while considering different constraints, like coal
availability, minimum and maximum permitted coal usage etc. Guo et al. (2009) proposed a
model of coal blending schedule to maximize economic benefits and later applied adaptive
simulated annealing GA to optimize various coal blending parameters. Jiang et al. (2009)
employed technique for order preference by similarity to ideal solution (TOPSIS) for
optimizing the coal blending process while considering four different blending strategies.
Ignition temperature, volatile matter, calorific value and cost were considered as the
important coal properties while identifying the optimal coal blending strategy.

Chakraborty and Chakraborty (2012) presented a multi-criteria GA approach for optimal
coal blending while considering different coal grades in India. Multiple compromised
optimal solutions were also provided to aid the coal blending process. Net calorific value,
total moisture content, dry ash free basis volatile matter, ash percentage-based dryness and
total sulphur-based dryness were identified as the blending indicators for each grade of coal.
Li et al. (2013) proposed an inexact fuzzy programming approach for power coal blending,
while considering environmental constraints for nitrogen oxide emission and nitrogen oxide
decomposition in power generation facilities. Moisture value, ash content value, heating
value, volatile matter, sulphur content value, cost, softening temperature and hardgrove
grindability index were the input parameters to the proposed approach. Taking into
consideration five coal properties, i.e. volatile matter content, heat rate, ash content, moisture
content and sulphur content, Dai et al. (2014) developed a simulation-based fuzzy
possibilistic programming model which was later solved using a direct search approach
while integrating fuzzy simulation and GA techniques. It was observed that the proposed
model could derive a series of coal blending schemes, identify the optimal coal blending
strategies, and provide a balance between system costs and acceptable possibility levels.
Santoso et al. (2016) optimized the low and high rank coal blending process to decrease
production cost and increase plant efficiency. Finite impulse response neural network
technique was adopted for model development, and principal component analysis and
partial least square methods were employed for selection of the model parameters.
Schellenberg et al. (2016) considered nine real time coal blending problems as the benchmark
and solved them using GA technique. The derived results were later compared with those
from a LP solver while showing the superiority of GA technique over the traditional LP
method. Jin et al. (2017) employed a multi-objective decision-making approach based on
fuzzy set theory to determine the optimal blending ratio for increased power plant economy.
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Moisture content, ash content, volatile matter, fixed carbon content and calorific value of the
constituent coals were adopted as the indicators to determine the optimal blending ratio.

From the review of the above-cited literature, it can be noticed that determination of the
optimal composition of various coal constituents in the final blend has been a topic of
immense research interest since several years, and different optimization techniques, like
GA and LP have mainly been deployed to resolve this problem. In GA technique, there is
almost no assurance of finding out the global optimal solution as there is a high likelihood
for the solution being stuck in the local optima. For GA, a decent sized population and a
large number of generations are required before achieving satisfactory solutions. In this
algorithm, various control parameters, such as cross-over probability, mutation probability
and elitism percentage, need to be also fine-tuned based on trial and error method. On the
other hand, LP, being an iterative-based optimization tool, takes a large number of iterations
before providing the optimal solution. There are also several limitations for the application
of LP, like it requires the objective function and constraints to be expressed in linear form, it
can only solve single objective problems, it does not consider change and evolution of the
decision variables, it does not provide global optimal solution etc.

2.2 Application of PROMETHEE-GAIA method
The PROMETHEE method combined with GAIA technique was introduced by Brans et al.
(Brans and Vincke, 1985; Brans and Mareschal, 1992) for solving multi-criteria decision-
making problems. Because of numerous advantages of PROMETHEE method, easy
computational procedure, comprehensiveness, ability to support group-level decision-
making for debate and consensus building, capability to deal with both qualitative and
quantitative criteria, capacity to tackle uncertain and fuzzy information etc., it has already
found wide ranging applications in various domains of engineering and management
(Behzadian et al., 2010), such as environment management, hydrology and water
management, business and financial management (Basilio et al., 2018), logistics and
transportation, lean manufacturing and assembly (Anand and Kodali, 2008) and energy
management.

Wang et al. (2006) integrated PROMETHEE, GAIA and analytic hierarchy process
(AHP) methods for solving decision-making problems in a vendor selection process.
Prvulovic et al. (2011) applied PROMETHEE and GAIA methodologies for the selection of
drying paltry seeds and powder materials. Chakraborty and Karande (2012) applied
PROMETHEE and GAIA approaches for selection of non-traditional machining process for
a given work material and shape feature combination. Silas et al. (2013) developed an
efficient service selection framework for pervasive environments using PROMETHEE
family of methods. From the survey of the application domains of PROMETHEE and GAIA
approaches, it becomes evident that they have not been employed before as an efficient
multi-criteria decision-making tool for determining the optimal coal blending strategies
while considering all the physical, thermal and economic factors of the constituent coals.
Therefore, in this paper, a hybrid multi-criteria decision support model is proposed which
aims at providing an accurate and realistic coal blending solution while identifying the
optimal composition of the constituent components in a coal blend. Sensitivity analysis is
also performed to study the effects of some of the important properties of the constituent
coals on the final coal blend composition.

3. Methods
The PROMETHEE is a popular multi-criteria decision-making (MCDM) method which
primarily aims at ranking different alternatives based on a given set of criteria/attributes
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(Brans and Vincke, 1985). Over the years, several versions of PROMETHEE method have
been developed, like PROMETHEE I, II, III, IV, V and VI. The PROMETHEE I method
provides a partial ranking to the alternatives, whereas, PROMETHEE II gives a complete
ranking to all the alternatives. The PROMETHEE III method provides an interval order
emphasizing indifference, PROMETHEE IV delivers continuous sets of possible
alternatives, PROMETHEE V includes segmentation constraints and PROMETHEE VI is
adopted when precise weights to different criteria are not allocated. The PROMETHEE
method is complemented with GAIA approach which acts as a visual decision aid to
corroborate the findings of PROMETHEEmethod.

Suppose in a decision-making problem, there are n candidate alternatives
A ai 2 A; for i ¼ 1; 2; 3; . . .; nð Þ to be evaluated based on m possible criteria
C cj 2 C; for j ¼ 1; 2; 3; . . .;m
� �

: Based on the outranking principle, PROMETHEE II
method evaluates the dominance of one alternative over the other and then determines the
rank for each of the considered alternatives. For each pair of alternatives (a, b) in the
decision/evaluation matrix and for each criterion cj, a real number Pj(a, b) is defined, as given
in equation (1), which determines the preference of alternative a over alternative b with
respect to criterion cj. A deviation function is introduced in equation (2), which defines how
much an alternative deviates from the other alternative, considering a given criterion.

Pj a; bð Þ ¼ Fj dj a; bð Þ� � ¼
0;

f dj a; bð Þ� �
;

1;

if
if
if

dj a; bð Þ# qj
qj < dj a; bð Þ# pj
dj a; bð Þ > pj

8<
: (1)

where f [dj(a, b)] is a non-decreasing preference function in the interval [0,1].

dk a; bð Þ ¼ ck að Þ � ck bð Þ (2)

where ck(a) and ck(b) are the quantitative evaluations of alternatives a and b with respect to
criterion ck. To evaluate the degree of preference of alternative a over alternative b with
respect to a particular criterion, six different preference functions are available, i.e. usual, U-
shaped, V-shaped, level, linear and Gaussian (Brans and Vincke, 1985). On the other hand, in
this evaluation process, qkand pkare treated as the indifference and preference thresholds,
respectively. It simply signifies that if the deviation is below the indifference threshold, the
preference of alternative a over b is considered negligible, whereas, if the deviation is above
the preference threshold, alternative a is significantly preferred over alternative b. In the
decision matrix, as the performance scores of the candidate alternatives with respect to
different criteria have varying dimensional units, it is always recommended to normalize the
entities of this matrix so as to make them dimensionless and comparable. However, the scale
for normalization is insignificant as the degree of preference always lies in the interval [0,1].

The aggregated preference indices are then calculated, as given below:

p a; bð Þ ¼
Xk
j¼1

wjPj a; bð Þ

p b; að Þ ¼
Xk
j¼1

wjPj b; að Þ

8>>>>><
>>>>>:

(3)
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where wj is the weight (relative importance) of jth criterion and
Xk
j¼1

wj ¼ 1. Here, p (a, b) is

the degree of preference of a over b, whereas, p (b, a) is the degree of preference of b over a.
Entropy method (Qui, 2002) is usually employed for determination of the unbiased estimates
of these criteria weights. The following steps are followed in the entropy method for
criterion weight estimation:

� The decision matrix is first normalized using linear normalization technique such
that rij 2 0 ; 1½ �;where rij corresponds to the normalized performance measure of ith

alternative with respect to jth criterion.
� The entropy measure of jth criterion is then calculated as: Hj ¼

�k
Xn
i¼1

fijlnfij; j ¼ 1; 2; 3; . . .;m, where fij ¼ rij=
Xn
i¼1

rij and k ¼ 1=lnn, and suppose

when fi j= 0, fij ln (fij) = 0.
� Finally, the weight of jth criterion is calculated as follows:

wj ¼
1� Hj

m�
Xm
j¼1

Hj

(4)

From the aggregated preference indices, two outranking flows are now defined. The positive
outranking flow, as expressed in equation (5), determines the total strength of alternative a
with respect to other alternatives. On the other hand, the negative outranking flow in
equation (6) determines the total weakness of alternative awith respect to other alternatives.
Based on these positive and negative outranking flow values, the net outranking flow is
estimated to show how an alternative fares against all other alternatives, considering both
its ‘bonuses’ (favourable criteria) and ‘penals’ (unfavourable criteria). The equation (7)
represents the estimation of the net outranking flow value from the positive and the negative
outranking flows. These net outranking flow values are finally employed to rank all the
candidate alternatives from the best to the worst.

wþ að Þ ¼ 1
m� 1

X
x2A

p a; xð Þ (5)

w� að Þ ¼ 1
m� 1

X
x2A

p x; að Þ (6)

w að Þ ¼ wþ að Þ � w� að Þ (7)

Subsequently, the GAIA technique acts as a visual modelling aid to complement the
complete ranking of the candidate alternatives as derived using PROMETHEE II method,
and it provides guidance regarding the impact analysis of the most important criterion on
the decision-making process. The GAIA plane represents the projections of a set of n
alternatives as a cloud of n points in an m-dimensional space (m is the number of criteria).
The positions of the alternatives on this plane signify their strengths and weaknesses with
respect to different criteria under consideration. With the help of appropriate principal
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component analysis technique, this m-dimensional space is orthogonally projected on the
GAIA plane. In the developed GAIA plane, alternatives as identified to be good on a
particular criterion would be oriented in the same direction of that criterion. On the other
hand, alternatives which are particularly dissimilar would lie in the opposite sides of the plot
(Brans and Mareschal, 1988). The longer the axis of a criterion, the more it discriminates
between the considered alternatives. In the GAIA plane, criteria having similar preferences
among the alternatives are oriented in the similar direction, whereas, criteria showing
conflicting preferences among alternatives, would have axes in opposite directions. All these
indications act as an aid to validate the results derived from PROMETHEE II method.

The PROMETHEE (an example of outranking method) is an interactive MCDM tool
designed to deal with both quantitative and qualitative evaluation criteria with discrete
alternatives. The performance of the alternatives can be expressed in their own dimensions.
This method can also handle uncertain and fuzzy information present in a decision matrix.
In PROMETHEEmethod, pair-wise comparison of the alternatives is basically performed so
as to compute a preference function for each criterion. Based on this preference function, a
preference index for alternative a over alternative b is estimated. This preference index is the
measure to support the hypothesis that alternative a is preferred to alternative b. It has
several advantages over the other MCDM methods, like AHP and TOPSIS. It can classify
alternatives which are difficult to compare because of a trade-off relation of evaluation
standards as non-comparable alternatives. Unlike AHP method, in this method, there is no
need to perform a pair-wise comparison again when comparative alternatives are added or
deleted. It is a straightforward method with less computational complexity. Although a
partial ranking of the alternatives is only obtained in PROMETHEE I method, but
PROMETHEE II can provide a complete ranking of the alternatives from the best to the
worst one. It can provide information on how the final ranking changes when different
decisions on weights, criteria and aggregation procedures are considered. It also supports
group decision-making, as it constitutes a useful platform for debate and consensus building
(Sen et al., 2015). On the other hand, GAIA is a visual aid to complement the derived rank
ordering and provide valuable guidance regarding the impact of the most important
criterion in the decision-making process. In the GAIA plane, positions of the alternatives
decide their strengths or weaknesses with respect to different criteria under consideration.
Similarly, the positions of the criteria provide information about their significance in
ranking of the alternatives and possibility of any conflict between them.

The PROMETHEE V method is the extension of PROMETHEE II approach while
considering segmentation constraints. This method becomes quite helpful when the set of
alternatives is segmented, and needs to be verified both between and within the cluster
(Chakraborty et al., 2018). Thus, the following objective function is formulated such that it
maximizes the benefit from all the alternatives subject to different criteria constraints:

Max
Xn
i¼1

w aið ÞXi (8)

whereXi are treated here as different raw coal grades considered in the blending process.
In this hybrid decision-making model, PROMETHEE II first provides the ranking of

coals from different reserves with respect to the net benefits added by the individual coals.
When PROMETHEE V is integrated with PROMETHEE II, it combines the net benefits of
various coals into a composite benefit function, which is subsequently maximized subject to
various constraints. Hence, integration of both these PROMETHEE techniques is very
critical to obtain an optimal blending decision. On the other hand, GAIA is a practical visual
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tool, which helps in modelling the problem graphically, providing more readability and
flexibility in understanding the problem in hand, and studying the effects of various
evaluation criteria and decisions on the benefit function.

Figure 2 exhibits the flowchart of the proposed multi-criteria decision-making model. In
this paper, coals from the mines of two major countries, i.e. India and the USA are
considered, and this hybrid model is then applied to determine the optimal compositions of
different coal constituents in the final blends.

4. Results
4.1 Blending of coals from India
In this example, coals received at the washery from six different collieries of a regional coal
company are considered. Broadly, coal can be classified into two groups, i.e. coking and non-

Figure 2.
Flowchart of the

hybridmulti-criteria
decision support

model

Model for
optimal coal

blending
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coking coals. Coking coal is sent to the washeries as it contains comparatively less ash. This
coking coal is further classified into six grades, depending on their ash content, i.e. steel
grades I and II, and washery grades I, II, III and IV (Chakaborty and Chakraborty, 2012). It
has been reported by the past researchers that as the coal reserves having better quality of
coal are limited and are also difficult to mine, the coals extracted from these reserves must
be blended judiciously to have the optimal combination of all the coal properties taken under
consideration. In India, BCCL (Bharat Coking Coal Limited) is the major producer of prime
coking coal, and it encompasses several coal mines, as well as washeries, located mostly at
Talcher (Odisha), Korba (Chhattisgarh) and Jharia (Jharkhand) area. The most notable
washeries from which coal is collected after washing are located at Durgapur (West Bengal),
Kargali (Jharkhand), Kathara (Bihar), West Bokaro (Jharkhand), Kedla (Jharkhand),
Madhuband (Bihar), etc.

In this example, five different properties of coal are considered, i.e. input cost (C1) (in INR/
ton), calorific value (C2) (in cal/kg), moisture content (C3) (in per cent), ash content (C4) (in per
cent) and sulphur content (C5) (in per cent). Here, calorific value of a particular grade of coal
is the sole beneficial property always requiring its higher value, whereas, the remaining four
coal properties are non-beneficial in nature preferred with their lower values. The above-
mentioned criteria are chosen in such a way that they consist of both beneficial and non-
beneficial properties of coal, as well as include cost factor at the same time. All these criteria
chosen affect differently the overall benefit obtained from the use of the blended coal. Table I
provides the detailed values of all the considered properties for six different grades of coal.
This table also exhibits the information regarding the average value of each of the
coal properties. To estimate the relative significance of each criterion (coal property) in the
coal blending process, entropy method is employed here to determine the weight of each of
the coal properties, as also given Table I. It can be revealed from this table that moisture
content of coal is the most significant criterion with a priority weight of 0.2267, followed by
ash content, sulphur content, input cost and calorific value in order of their preference.

Now, while using PROMETHEE II method and based on the usual preference function,
the net outranking flows for all the six coal grades are calculated and they are subsequently
ranked, as shown in Table II. It can be observed from this table that steel grade I (ST1) and
washery grade II (W2) occupy the top two positions in the derived ranking list, and they are
the major contributors in the final blend taking into consideration the coals extracted from
different mines in India. This same observation can well be validated from the GAIA plot
and PROMETHEE rainbow diagram as shown in Figures 3 and 4, respectively. Based on
these GAIA plot and PROMETHEE rainbow diagram, the following conclusions can be
drawn:

Table I.
Properties of
different coal grades
for Example 1

Alternative

Properties (Criteria)
Input cost Calorific value Moisture content Ash content Sulphur content

C1 C2 C3 C4 C5

Steel grade I (ST1) 2316.2 3900 30.5 13.5 0.56
Steel grade II (ST2) 1996.2 3100 33.6 16.5 0.78
Washery grade I (W1) 1714.2 3800 32.4 19.5 0.7
Washery grade II (W2) 1403.37 3500 29.7 22.5 0.5
Washery grade III (W3) 1118.4 2800 31 25.5 0.45
Washery grade IV (W4) 999.2 3500 34.2 28.5 0.34
Average 1591.26 3433.33 31.9 21 0.55
Weight 0.1920 0.1758 0.2267 0.2059 0.1995
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� Coal property C3, i.e. moisture content is the most significant criterion having the
longest axis in the GAIA plot and it has the maximum power in discriminating the
six considered Indian coal grades.

� Coal grades ST1 and W2 are oriented in the same direction of the decision axis
(shown in red colour in the GAIA plane), which signify that they are the best options
among all the candidate alternatives.

� Coal grade ST1 has the maximum distance from the origin in the direction of the
decision axis. Hence, it is the best performing alternative.

� Coal grade W2 has four ‘bonus’ properties (C1, C2, C3 and C5). It is only lagging
behind with respect to coal property C4 (ash content).

� Coal grade ST1 has three ‘bonus’ properties (C2, C3 and C4) and two ‘penal’
properties (C1 and C5).

� Coal grade ST2 occupies the last position in the ranking list, having only one
property in its favour, i.e. it has moderately low ash content.

Hence, the integrated approach of PROMETHEE and GAIA methods helps in identifying
the most suitable constituent grades of coal in the final blend taking into consideration the

Table II.
Complete ranking of
the alternative coal

grades in Example 1

Rank Alternative Net outranking flow

1 Steel grade I (ST1) 0.2858
2 Washery grade II (W2) 0.2638
3 Washery grade III (W3) �0.0191
4 Washery grade IV (W4) �0.0411
5 Washery grade I (W1) �0.0568
6 Steel grade II (ST2) �0.4327

Figure 3.
Developed GAIA

plane for Example 1

Model for
optimal coal

blending
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strengths and weaknesses of all the six coal grades. As observed, it is almost impossible to
find out a particular grade of coal having all of its properties as “bonus”. Thus,
PROMETHEE V is now employed here to solve this Indian coal blending problem to obtain
an optimal mix while satisfying a given set of criteria constraints. This method determines
the composition of the preselected coal constituents in the final blend. To solve this coal
blending problem, an LP model is developed based on equation (8) subjected to various
constraints associated with the achievement of different coal property values. In these
constraints, the right hand side constants are the average values of different coal properties.
On the other hand, the constants in the objective function equation are the derived net
outranking flow values for the six coal grades. This LP problem is subsequently solved
usingMATLAB (R2011b) and the derived results are shown in Table III.

Maximize Z= 0.2858X1 – 0.4327X2 – 0.0568X3þ 0.2638X4 – 0.0191X5 – 0.0411X6 (9)

Subject to

2316.2X1þ 1996.2X2þ 1714.2X3þ 1403.37X4þ 1118.4X5þ 999.2X6# 1591.26 (input cost)

3900X1þ 3100X2þ 3800X3þ 3500X4þ 2800X5þ 3500X6� 3433.33 (calorific value)

30.5X1þ 33.6X2þ 32.4X3þ 29.7X4þ 31.0X5þ 34.2X6# 31.9 (moisture content)

13.5X1þ 16.5X2þ 19.5X3þ 22.5X4þ 25.5X5þ 28.5X6# 21 (ash content)

0.56X1þ 0.78X2þ 0.70X3þ 0.50X4þ 0.45X5þ 0.34X6# 0.55 (sulphur content)

X1þ X2þ X3þ X4þ X5þ X6 = 1,Xi� 0 (for i= 1, 2, . . ., 6)

Figure 4.
PROMETHEE
rainbow diagram for
Example 1

Table III.
Optimal solution for
Example 1

Alternative (Coal blend constituent) Percentage composition

Steel grade I (ST1) 0.2058
Steel grade II (ST2) 0
Washery grade I (W1) 0
Washery grade II (W2) 0.7942
Washery grade III (W3) 0
Washery grade IV (W4) 0
Objective function value 0.2683
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The results derived in Table III indicate that in this blending process for the Indian coals,
the final blend contains 79.42 per cent (approximately 80 per cent) of washery grade II
(W2) and 20.58 per cent (approximately 20 per cent) of steel grade I (ST1). The higher
percentage composition of W2 coal in the final blend can be attributed to the fact that it
has the least amount of moisture content, moderately low input cost, comparatively low
levels of ash content and sulphur content, and a high calorific value. It is also worthwhile
to mention here that the moisture content property against which coal grade W2 is
extremely strong, is already deemed to be most significant criterion in this coal blending
process. The final coal blend also contains approximately 20 per cent ST1 coal grade,
owing to its maximum calorific value. It has the minimum ash content, but also has the
highest input cost. In the final blend, the average values of different coal properties are
estimated as input cost =1591 INR/ton, ash content = 20.64 per cent, calorific value =
3582.3 cal/g, sulphur content = 0.51 per cent and moisture content = 29.86 per cent.

To better understand the economic impact of this coal blending process, sensitivity
analysis is performed to show the effects of changing values of input cost of raw coal on the
final blend composition, while keeping the other coal properties constant. The results of this
sensitivity analysis are shown in Figure 5. It can be observed from this figure that below the
average input cost at �1560 INR, it is almost impossible to obtain an optimal blend
composition satisfying all the considered constraints. It can also be noticed that the more the
bound on coal input cost is relaxed, more would be the participation of ST1 coal grade in the
final blend (its amount increases from 17 per cent to 91 per cent in the blend). It can be
revealed from Table I that except the input cost, coal grade ST1 has favourable values of
calorific value, moisture content and ash content as compared to coal grade W2. Both of
them have almost comparable sulphur content. Thus, when the economic constraint is
released, ST1 would likely replaceW2 in the final coal blend. Keeping in mind the scarcity of
better coal reserves in India as well as other economic considerations, it is always advisable
to take the help of this hybrid multi-criteria decision-making model in identifying the
composition of the constituent coal grades in the final blend.

Figure 5.
Sensitivity analysis
with respect to input

cost in Example 1

Model for
optimal coal

blending
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4.2 Blending of coals from the USA
In this example, rawcoals from11different coalmines in theUSAare considered todetermine the
optimal coal blending strategy. The relative performance of these coals is evaluatedwith respect
tofive different coal properties, i.e. ash content (C1) (in per cent), sulphur content (C2) (in per cent),
maximumreflectance (C3), dilatation (C4) andpurchaseprice (C5) (inUSD/ton).Thevaluesof these
properties are provided in Table IV, along with related demographic information of the
considered coals. Amongst these five properties of raw coal, maximum reflectance and dilation
are the beneficial criteria and the remaining three are non-beneficial criteria. The last two rows of
Table IV respectively represent the average andweight of each of the five coal properties. In this
example, maximum reflectance has the highest significance (weight of 0.4071), followed by
purchase price of coal (weight of 0.2439). It can also be noticed that in comparison to the Indian
coals, coals from the American mines have relatively higher sulphur content, but very low ash
content.UsingPROMETHEE IImethod, the correspondingnet outrankingflowvalues for all the
coal alternativesarenowestimated,basedonwhich theyarealso ranked, as exhibited inTableV.

From the results derived from the PROMETHEE II method-based analysis, it can be
observed that in this coal blending problem, the top four positions of the ranking list are
occupied by Rowland (A5), Masco (A10), Beartrice (A3) and Icc Type B (A6) alternatives. The
corresponding GAIA plot and PROMETHEE rainbow diagram are shown in Figures 6 and 7,
respectively. From these two figures, the following observations can be inferred:

� C3 (maximum reflectance) is the most significant criterion having the maximum axis
length.

� Coal alternatives A5 and A10 are the closest to the decision axis, and they too share
the same three “bonus” criteria (C3, C4 and C5) and two “penal” criteria (C1 and C2).

� Alternative A3 is in the third position of the ranking list with three “bonus” (C1, C2
and C3) and two “penal” (C4 and C5) criteria.

� Criteria C1 and C2, and criteria C4 and C5 are oriented in opposite directions in the
GAIA plot, and they have almost the similar preferences in evaluating the
performance of the coal alternatives.

� Coal alternative Gilbert (A7) occupies the last position in the derived ranking list,
having no “bonus” property in its favour.

Table IV.
Properties of
different coals for
Example 2

Alternative

Properties (Criteria)
Ash

content
Sulphur
content

Maximum
reflectance Dilatation Price

C1 C2 C3 C4 C5

Keystone (McDowell, West Virginia) (A1) 5.5 0.8 1.64 35 72
Itmann (Wyoming, West Virginia) (A2) 5.5 0.8 1.52 55 70.6
Beartrice (Buchannan, Virginia) (A3) 4.5 0.7 1.66 44 72.21
Pittston (Luzerne, Pennsylvania) (A4) 7 0.7 1.04 132 69.8
Rowland (Raleigh, West Virginia) (A5) 6.5 0.8 1.3 215 60.5
Icc Type B (Montana) (A6) 4.25 0.8 0.91 170 54.5
Gilbert (Mingo, West Virginia) (A7) 9.5 0.8 0.9 130 64.48
Sprague (Lincoln, Washington) (A8) 6 0.8 0.9 130 60.72
Kellerman (Tuscaloosa, Alabama) (A9) 5.5 0.8 0.94 152 57
Masco (Kentucky) (A10) 6.5 0.9 1.1 150 53
Harman (Buchannan, Virginia) (A11) 6 0.8 1 145 60
Average 6.07 0.79 1.17 123.45 63.16
Weight 0.0808 0.0978 0.4071 0.1703 0.2439
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Thus, the hybrid approach integrating PROMETHEE II and GAIA methods provides a fair
idea about the candidate constituents in thefinal coal blendwith the help of complete ranking of
the alternatives and developed visual aid. However, there is no single coal alternative identified
having all of its five properties as ‘bonus’. This compels for the application of PROMETHEEV
method which helps in segmentation while identifying the optimal composition of the
constituent coals from the mines of the USA in the final blend subjected to a set of constraints
imposed based on the fulfilment of the considered coal properties. For this, the following LP
problemisdevelopedandsubsequently solved.Thederivedresults areprovided inTableVI.

Maximize Z= –0.0172X1þ 0.0183X2þ 0.1796X3 – 0.0742X4þ 0.3318X5þ 0.1581X6
– 0.5569X7 –0.4354X8þ 0.1082X9þ 0.2553X10þ 0.0323X11 (10)

Subject to

5.5X1 þ 5.5X2 þ 4.5X3 þ 7.0X4 þ 6.5X5 þ 4.25X6 þ 9.5X7 þ 6.0X8 þ 5.5X9 þ 6.5X10
þ 6.0X11# 6.07 (ash content)

0.8X1 þ 0.8X2 þ 0.7X3 þ 0.7X4 þ 0.8X5 þ 0.8X6 þ 0.8X7 þ 0.8X8 þ 0.8X9 þ 0.9X10
þ 0.8X11# 0.79 (sulphur content)

1.64X1 þ 1.52X2 þ 1.66X3 þ 1.04X4 þ 1.30X5 þ 0.91X6 þ 0.9X7 þ 0.9X8 þ 0.94X9
þ 1.1X10þ 1X11� 1.17 (maximum reflectance)

35X1 þ 55X2 þ 44X3 þ 132X4 þ 215X5 þ 170X6 þ 130X7 þ 130X8 þ 152X9 þ 150X10
þ 145X11# 123.45 (dilatation)

72X1 þ 70.6X2 þ 72.21X3 þ 69.8X4 þ 60.5X5 þ 54.5X6 þ 64.48X7 þ 60.72X8 þ 57X9
þ 53X10þ 60X11# 63.16 (price)

X1þ X2þX3þ X4þ X5þ X6þ X7þ X8þ X9þ X10þ X11 = 1,Xi� 0 (for i= 1, 2, . . .,11)

It is observed from the results of Table VI that the final blend consists of coals from the mines
of Beartrice (A3) and Rowland (A5) with a contribution of 21.6 per cent and 78.4 per cent
respectively. This can be owed to the fact that coal from the mines of Rowland has the
maximum dilatation value (215) and reasonable price (US$60.5/ton), whereas, coal from the
mines of Beartrice has comparatively high price (approximately US$72/ton), very low dilatation
(44), highest maximum reflectance (1.66) and lowest ash content (4.5 per cent) values. Thus, a
judicious mixture of the coals from the mines of Beartrice (A3) and Rowland (A5) can attain all
the properties as desired in the blending process. The values of different coal properties in the
final blend are estimated as ash content = 6.0682 per cent, sulphur content = 0.7784 per cent,
maximum reflectance = 1.378, dilatation = 178.08 and purchase price = 63.03 USD/ton.

Table V.
Net outranking flows

and ranking of the
alternatives in

Example 2

Rank Alternative Net outranking flow

1 Rowland (A5) 0.3318
2 Masco (A10) 0.2553
3 Beartrice (A3) 0.1796
4 Icc Type B (A6) 0.1581
5 Kellerman (A9) 0.1082
6 Harman (A11) 0.0323
7 Itmann (A2) 0.0183
8 Keystone (A1) �0.0172
9 Pittston (A4) �0.0742

10 Sprague (A8) �0.4354
11 Gilbert (A7) �0.5569
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Now, to study the effects of raw coal purchase price and ash content on the compositions of
the constituent coals in the final blend, sensitivity analysis studies are subsequently
performed. The results of these sensitivity analyses are depicted in Figures 8 and 9. It can be
observed from these two figures that lowering the average purchase price below 59.12 USD/
ton or lowering the target ash content below 4.34 per cent leads to an infeasible solution, i.e.
no optimal coal mix is obtained. It can also be noted that when the purchase price is lowered
below the value of �63.03 USD/ton, a new coal mix is emerged where coal alternative Icc
Type B has a significant contribution in the blend. It can be affiliated to the fact that the coal
alternative Icc Type B has the secondminimum purchase price. This fact can also be evident

Figure 6.
Developed GAIA plot
for Example 2

Figure 7.
PROMETHEE
rainbow diagram for
Example 2
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from the PROMETHEE rainbow diagram of Figure 7 where coal alternative A6 (Icc Type B)
has the purchase price as its top most “bonus” property. It is also interesting to notice that
although the coal alternative A10 (Masco) has the second rank with the least purchase price;
it is not identified as a constituent in the final blend because it has the maximum ash content
and sulphur content values. After the purchase price of approximately US$63.03/ton, coal
alternatives Beartrice and Rowland become the steady contributors in the coal mix. A
similar trend can be observed from the sensitivity analysis plot for ash content in Figure 9.
Below the target ash content level of 6.06 per cent, coal alternative Icc Type B occupies a
position in the optimal coal blend. This can be supported by the fact that it has the least ash
content (approximately 4.25 per cent), closely followed by Beartrice (approximately 4.5 per

Table VI.
Optimum solution for

Example 2

Alternatives (Coal blend constituent) Percentage composition

Keystone (A1) 0
Itmann (A2) 0
Beartrice (A3) 0.2159
Pittston (A4) 0
Rowland (A5) 0.7841
Icc Type B (A6) 0
Gilbert (A7) 0
Sprague (A8) 0
Kellerman (A9) 0
Masco (A10) 0
Harman (A11) 0
Objective function value 0.2989

Figure 8.
Sensitivity analysis

with respect to
purchase price in

Example 2
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cent). However, beyond the ash content level of 6.06 per cent, Icc Type B does not feature in
the optimal coal blend because it has almost the worst value for maximum reflectance (0.91),
which is also the most important criterion in this coal blending problem. So, it can be
propounded that although lower purchase price or lower ash content can be achieved, but at
the cost of a relatively lower ranked coal with lower maximum reflectance value.

5. Discussions
It has become evident from the literature survey that all the previous approaches proposed for
determining the optimal coal blending strategies have considered either a single objective (like
cost or sulphur emission) or multiple objectives. However, in this combined PROMETHEE-
GAIA-based approach, a new decision model is developed which would decide the net benefit
that a constituent coal can provide to the whole blend, and different constituents are thus ranked
based on these net benefits. This helps the concerned decision makers to have a clear idea about
which of the constituents would be more beneficial for the blend (while considering several
metallurgical, as well as economical criteria). Furthermore, to provide an optimal blending
decision, an LP model is formulated having a single objective, i.e. to maximize the benefit out of
all the different constituents in the final blend taken together. For simplicity, linearized
constraints are considered for different coal properties in the LP model. This model would
guarantee a global optimal solution. Further analysis is also performed to observe the sensitivity
of the objective function with respect to different criteria bounds. It would help the decision
makers to be flexible enough in their choices depending on the changing criteria constraints.
The GAIA method, integrated with PROMETHEE technique, would also provide a visual
decision aid to understand the positions of different coal constituents with respect to the
objective function and constraints.

Figure 9.
Sensitivity analysis
with respect to ash
content in Example 2
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One of the main disadvantages of this adopted model is that it assumes linearized
constraints with no correlation between different properties of the constituent coals
considered in the blend. This assumption simplifies the model to provide a good enough
blend decision to the decision makers in least time.

The topic of this paper mainly focuses on solving one of the pressing problems in steel
production industry, i.e. determination of an optimal coal blending strategy that would result in
better utilization of coal at a reasonable price. The hybrid decision-making model integrating
PROMETHEE and GAIA approaches becomes successful in providing the optimal blend
composition, keeping in mind the related economical constraints. Based on the solutions from
this hybrid model, the engineers working in steel plants would have direct benefits. This new
approach not only provides an optimal coal blending strategy but also generates alternative
optimal compositions of the constituent coals in the final blend that would result from relaxing
some of the considered constraints. This allows the concerned engineers enough flexibility in
choosing alternative blending strategies when they can relax some constraints. One of the major
impacts of this model would be in reducing the pollution rate, by choosing a composition that
would emit as minimum as possible greenhouse gases after combustion of constituent coals. As
economical factors are also considered in this model, the final composition provides a more
realistic solution, becausemaking profit is always one of themajor targets of any organization.

Although, in this paper, the hybridmodel accommodates the economical constraints, there are
several other real factors which can be considered in the model in near future. Availability of
resources is one of those factors that poses a challenge to the blending decision. As coal takes
millions of years to develop and there is a limited amount of it, it is considered as a non-renewable
source of energy. Moreover, shortage of higher grade of coal as compared to abundance of lower
grade of coal introduces a complexity to the decision-making problem. Hence, sustainability of
resources, i.e. using the most out of the available and at the same time, conserve for the coming
generations, are the important questions needed to be answered in future researchwork.

6. Conclusions
In this paper, a hybrid multi-criteria decision-making model is framed while simultaneously
extracting the benefits from PROMETHEE II and V methods, and GAIA approach. The
PROMETHEE II provides a complete ranking of different coal alternatives based on
the considered coal properties, whereas, GAIA method provides a visual decision aid while
supporting the results derived from PROMETHEE II method. It also identifies the relative
strengths and weaknesses of the candidate alternatives with respect to different coal
properties. Finally, PROMETHEE V method determines the optimal composition of the
constituent coals in the final blend while satisfying the attainment of different criteria/
properties. From the derived solutions, it can be concluded that the proposed model can
provide quite economical decisions regarding the compositions of the optimal coal blends
while maintaining good output quality of the final mixes. The GAIA plane and
PROMETHEE rainbow diagram also guide the decision-making process in identifying the
“bonus” and “penal” properties for each of the coal alternatives. The sensitivity analyses
also show the effects of variations of different coal properties on the compositions of the
final blends. To provide more flexibility to the concerned engineers about the blending ratio,
these analyses guide them in the decision-making process while judging the impacts of
different constraints on the optimal coal blend. As this model takes into account the
purchase price of coals from different reserves, it is always expected to provide more
realistic solutions. Thus, it would be beneficial to deploy this decision-making model to
different blending optimization problems in other spheres of manufacturing industries.
There are also certain limitations in this model which may be the topic of future research
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work. For example, apart from the economic consideration, there is also another factor
which highly affects the blending ratio, i.e. availability of resources. Given the increasing
consumption of available resources from different coal mines, it would be more practical to
judiciously use those resources to extract maximum benefit, while keeping the sustainability
factor in mind. Therefore, the application of this model can be extended to further
accommodate factors, like availability of coals and sustainability issues in future studies.
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