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Parametric optimization of abrasive water-jet machining processes using  
grey wolf optimizer 
Shankar Chakraborty and Ankan Mitra 

Department of Production Engineering, Jadavpur University, Kolkata, India  

ABSTRACT 
Abrasive water-jet machining (AWJM) is a hybrid advanced machining process, which can be 
economically applied to machine almost any kind of material. It employs a high velocity waterjet to 
propel abrasive particles through a nozzle on the workpiece surface for material removal. The machining 
performance of AWJM process naturally depends on its several control (input) parameters, like water 
pressure, nozzle diameter, jet velocity, abrasive concentration, nozzle tip distance etc., which have also 
predominant effects on its responses, i.e., material removal rate, surface roughness, overcut, taper etc. In 
this paper, a new evolutionary algorithm, i.e., grey wolf optimizer (GWO), a technique based on the 
hunting behavior of grey wolves, is applied for finding out the optimal parametric combinations of AWJM 
processes. The main advantage of this algorithm is that it does not accumulate towards some local 
optima, and the presence of a social hierarchy helps it in storing the best possible solutions obtained so 
far. The derived results using GWO exhibit a significant improvement in the response values as compared 
to the previous attempts for parametric optimization of AWJM processes while applying other algorithms. 
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Introduction 

In order to meet the present day industrial requirements 
of high quality and precise products having extremely compli-
cated features, conventional material removal processes are 
being continuously replaced by the non-traditional machining 
(NTM) processes. These NTM processes can not only 
eliminate the complexity of the conventional machining 
processes but also provide better surface quality and high 
dimensional accuracy while generating intricate and complex 
shapes on different difficult-to-machine materials. Based on 
the material removal mechanism, the NTM processes can be 
categorized into electro-thermal processes (laser beam 
machining, electron beam machining, electro-discharge 
machining, etc.), electrochemical processes (electrochemical 
machining, electrochemical grinding, electro jet drilling, 
etc.), mechanical processes (abrasive jet machining (AJM), 
water-jet machining, ultrasonic machining, abrasive water-jet 
machining (AWJM), etc.), and chemical processes (chemical 
milling, photochemical milling, etc.). 

Abrasive water-jet machining is one such NTM process 
which employs a mixture of water and abrasive particles in 
form of a high-velocity jet as a tool for removal of material 
from the workpiece surface. Water jet at high velocity propels 
abrasives in the mixing chamber and the mixture is then 
passed through a nozzle, which increases the velocity of the 
jet as well as guides it at a narrow zone for striking 
the workpiece surface. Thus, the abrasive water jet strikes on 
the workpiece at very high velocity and the material is 
removed by the erosive action of the abrasives. Brittle fracture 

takes place due to the hammering action of the abrasives on 
the workpiece and subsequently, the wear particles produced 
are removed from the machining zone by the water jet. One 
of the major advantages of AWJM process over AJM process 
is that no dust is produced since a mixture of water and abra-
sives is utilized for material removal. In this process, very high 
cutting speed can be achieved as compared to WJM process, 
because of the carrying medium, i.e., water. It generally helps 
in accelerating the abrasive particles to a higher speed, which 
can also be varied by changing water pressure and nozzle 
diameter accordingly. It is practically suitable to machine both 
harder as well as softer work materials, and as opposed to 
other NTM processes, there is no generation of thermal stress. 
However, residual stresses due to striking of high velocity 
abrasive particles are present locally, which decrease away 
from the kerf. It can too machine electrically non-conductive 
and hard-to-machine materials, specially sandwich- 
honeycomb structural materials for use in aerospace 
industries. 

The performance of an AWJM process depends on its 
various machining parameters, like the diameter of the 
abrasive water-jet nozzle, feed rate of the nozzle, abrasive 
concentration, nozzle pressure, stand-off distance, abrasive 
grain size, etc. Each of these machining parameters has also 
an effect on the responses, i.e., material removal rate (MRR) 
and surface roughness (SR) of the AWJM process. It has been 
investigated that an increase in stand-off distance would cause 
a rapid decrease in the machined depth. Hashish[1] developed 
a mathematical model to predict the depth of machining based 
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on a given set of AWJM process parameters. However, in 
order to achieve maximum MRR or minimum SR, a perfect 
parametric mix of various AWJM process parameters needs 
to be searched out. Several mathematical and analytical tools, 
like response surface methodology (RSM), artificial neural 
network (ANN), grey relational analysis (GRA), Taguchi 
robust design methodology etc. have already been deployed 
so as to model the interrelationships between AWJM process 
parameters and its responses, while providing the optimal 
combinations of different process parameters in order to 
satisfy various end-product requirements. Complexity in 
machining dynamics and material removal mechanism has 
forced the earlier researchers to find out optimal or near 
optimal machining conditions within discrete and continuous 
parametric spaces having multi-modal, differentiable or non- 
differentiable objective functions, formulated from the 
developed mathematical models. In this paper, grey wolf 
optimizer (GWO) which mimics the pack hunting behavior 
of grey wolves is applied for parametric optimization of two 
AWJM processes, and its performance is also validated with 
respect to other popular algorithms. 

Jain et al.[2] considered two mathematical models for 
optimization of process parameters in AJM of brittle and 
ductile materials at normal impact of abrasive particles using 
genetic algorithm (GA), and investigated the causes of 
variation in MRR with respect to various decision variables 
(i.e., mass flow rate, mean radius and velocity of the abrasive 
particles). Çaydaş et al.[3] considered abrasive grit size, traverse 
speed, water-jet pressure, stand-off distance and abrasive flow 
rate as the most important parameters in an AWJM process, 
and predicted the SR value while employing ANN technique. 
Zain et al.[4] integrated simulated annealing (SA) and GA to 
determine the optimal AWJM process parameters leading to 
a minimum value of SR. While combining ANN and SA tech-
niques, Zain et al.[5] estimated the optimal settings of traverse 
speed, water-jet pressure, stand-off distance, abrasive grit size 
and abrasive flow rate for achieving a minimum SR value. 
Aultrin et al.[6] presented a fuzzy logic-based modeling of 
AWJM process, and predicted the values of MRR and SR for 
different combinations of process parameters, like water-jet 
pressure at the nozzle exit, diameter of the abrasive water-jet 
nozzle, feed rate of the nozzle, mass flow rate of water and 
mass flow rate of the abrasives. Pawar and Rao[7] employed 
teaching-learning-based optimization (TLBO) algorithm for 
parametric optimization of an AWJM process and compared 
its performance with the other state-of-the-art optimization 
algorithms. Yusup et al.[8] applied artificial bee colony 
(ABC) algorithm to optimize the settings of five AWJM 
process parameters, i.e., traverse speed, water-jet pressure, 
stand-off distance, abrasive grit size and abrasive flow rate 
for achieving minimum SR value. It was also concluded that 
the optimization performance of ABC algorithm was superior 
to ANN, GA, and SA techniques. Mohamad et al.[9] employed 
cuckoo algorithm for prediction of SR value in AWJM process 
and concluded that it could outperform the optimization 
results of two well-known computational techniques, i.e., 
ANN and support vector machine. Aultrin and Anand[10] 

applied GRA technique for parametric optimization of five 
process parameters for AWJM of Aluminium 6061 alloy. 

Jagadish et al.[11] determined the optimal combinations of 
pressure within the pumping system, stand-off distance and 
nozzle speed in an AWJM process, while considering two 
process responses, i.e., SR and process time. Kubade et al.[12] 

studied the effects of water pressure, traverse speed, abrasive 
flow rate and stand-off distance of an AWJM process on 
MRR and SR. Lohar and Kubade[13] investigated the effects 
of different AWJM parameters (water pressure, feed rate, 
abrasive flow rate and stand-off distance) on MRR and SR 
while machining of high carbon high chromium steel (AISI 
D3). Shukla and Singh[14] applied firefly algorithm for deter-
mining the optimal values of the responses while considering 
the given ranges of the process parameters as the constraints. 
Dhanawade and Kumar[15] considered four important 
parameters (hydraulic pressure, traverse rate, stand-off 
distance, and abrasive mass flow rate) of an AWJM process 
and investigated their influences on delamination, kerf taper 
ratio and kerf top width. Nair and Kumanan[16] considered 
water pressure, abrasive flow volume, stand-off distance and 
table feed as the significant process parameters in AWJM of 
Inconel 617, and applied weighted principal component 
analysis (WPCA) method for optimizing six responses, i.e., 
MRR, circularity error, cylindricity error, axis perpendicularity 
error, surface perpendicularity error, and parallelism error. In 
all the previous attempts to optimization of multiple 
responses, weights assigned to different responses were 
assumed prior to optimization. However, no relevant guidance 
was provided regarding how to select those weights. In this 
paper, using GWO algorithm, a non-dominated set of Pareto 
solutions is provided for multi-response optimization, which 
guides the process engineers to select appropriate weights, as 
well as, being non-dominated, each solution is as good as 
the others in the Pareto set. 

Materials and Methods 

Grey wolf (Canis lupus), also known as a western wolf, is a 
canine native to the remote areas of Eurasia and North 
America, and is considered as one of the zenith predators, 
i.e., they are at the top of the food chain. The grey wolf is a 
social animal, whose basic social unit is a mated pair, i.e., a 
male and a female, and their offspring. On an average, a pack 
of grey wolves has a size of 5–11. They have a very strict social 
dominant hierarchy. 

Their pack is divided into four groups, i.e., alpha, beta, 
delta, and omega, as shown in the hierarchical pyramid of 
Fig. 1. A male and a female are the leaders of the pack, called 
the alphas. All major decisions of hunting, sleeping place, time 
to wake up and so on, are taken by them. Their decisions are 
imposed on the whole pack. They are also called the dominant 
wolves in their pack and their orders should be followed by the 
pack. The second level of hierarchy in grey wolves is 
constituted by the beta. They are second in command to the 
alpha wolves and assist them in decision making and other 
activities of the pack. They can be either a male or female 
and is considered to be the leading candidate for the alpha 
position if an existing alpha passes away or becomes senile. 
They act as the advisors to the alpha and decision reinforcer 
to the rest of the pack. The lowest level of the hierarchy is 

2 S. CHAKRABORTY AND A. MITRA 



the omega. They have to report to the other dominant wolves 
and they are allowed to eat at the last in a pack. If a wolf is not 
an alpha, beta, or omega, it is a delta (sub-ordinate). They 
report to the alphas and betas, but are dominant over the 
omegas. Scouts, elders, hunters, sentinels, and caretakers 
belong to this category.[17] 

Apart from the social hierarchy, grey wolves are also 
infamous about their group hunting pattern. According to 
Muro et al.,[18] the main phases of their hunting activity are 
shown in Fig. 2 and can be enumerated as below: 
a. tracking, chasing and approaching the prey, 
b. pursuing, encircling and harassing the prey until it stops 

moving, and 
c. attack towards the prey. 

In order to design and implement GWO algorithm, the 
above-mentioned hunting behavior and social hierarchy of 
grey wolves are mathematically modeled, as described in 
subsequent sub-sections. 

The social hierarchy, tracking, encircling, and attacking the 
prey are discussed in the subsequent sections.[17] 

Social hierarchy 

In this model, the alpha (α) is considered to be the best 
solution, and beta (β) and delta (δ) are the second and third 
best solutions respectively. The rest of the population is 
assumed to be omega (ω). The hunting process is 
guided by the alpha, beta, and delta, and the omegas follow 
them. 

Encircling the prey 

Grey wolves have a distinct hunting pattern, i.e., they encircle 
their prey during the hunt. The following equations 
mathematically depict their encircling behavior. 

~D ¼ ~C �~XpðtÞ � ~XðtÞ
�
�

�
� ð1Þ

~Xðt þ 1Þ ¼ ~XpðtÞ � ~A � ~D ð2Þ

where t indicates the most recent iteration, ~A and ~C are the 
coefficient vectors. The position vector of the prey is denoted 
by ~Xp and the current position of the grey wolf is represented 
by ~X. The vectors ~A and ~C can be calculated using the 
following two equations: 

~A ¼ 2~a �~r1 � ~a ð3Þ
~C ¼ 2 �~r2 ð4Þ

where components of ~a are linearly decreased from 2 to 0 over 
the entire course of iteration, and r1 and r2 are the random 
vectors in the interval [0,1]. The effects of these equations 
are illustrated in Figs. 3 and 4 respectively. The grey wolves 
can update their positions anywhere randomly, inside the 
space surrounding the prey, using Eqs. (1) and (2). 

Hunting 

Grey wolves are specialized in locating their prey and encircle 
it for hunting. The alpha wolf leads the hunt, the beta and 
delta follow the hunt occasionally. However, in a virtual search 
space, the location of the optimum (prey) is not known, so it is 
assumed that the alpha, beta, and delta have better knowledge 
about the location of the prey. Hence, the best solutions 
derived so far are stored in alpha, beta, and delta, and the 
omegas are obliged to update their positions with respect to 
the positions of alpha, beta, and delta, according to the 
following equations: 

~Da ¼ ~C1 �~Xa � ~X
�
�

�
�; ~Db ¼ ~C2 �~Xb � ~X

�
�

�
�; ~Dd

¼ ~C3 �~Xd � ~X
�
�

�
�

ð5Þ

~X1 ¼ ~Xa � ~A1 � ~Da

� �
; ~X2 ¼ ~Xb � ~A2 � ~Db

� �
; ~X3

¼ ~Xd � ~A3 � ~Dd

� � ð6Þ

~X t þ 1ð Þ ¼
~X1 þ~X2 þ~X3

3
ð7Þ

Figure 5 illustrates how an omega updates its position with 
respect to the positions of alpha, beta, and delta, in a 2D search 
space. It can easily be deduced that the final position of an 
omega would be at a random place within a circle defined 
by the positions of alpha, beta, and delta, i.e., the omegas 
update their positions randomly around the prey.[17] 

Attacking prey (exploitation) 

Grey wolves finish the hunting process by attacking their prey. 
In order to mathematically model the approaching of wolves 
towards the prey, the value of the vector ~a is linearly decreased 
from 2 to 0 over the entire iteration. So, the fluctuation range 
of ~A is also decreased by ~a, i.e., ~A can be any arbitrary value in 

Figure 1. Social hierarchy of grey wolves.[17]  

Figure 2. Hunting pattern of grey wolves.[17]  
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the interval [–a,a]. When the random values of ~A are in the 
interval [–1,1], the location of the search agent can be 
anywhere between its current position and the location of 
prey. Hence,when |A| < 1, the wolves tend to attack their prey, 
as illustrated in Fig. 6. 

Search for prey (exploration) 

Grey wolves hunt mostly according to the positions of alpha, 
beta, and delta. They converge to attack a prey and diverge 
to search for a (better) prey. Random values of ~A which are 
greater than 1 and less than −1, i.e., |A| > 1are utilized, in 
order to model this diverging behavior of grey wolves. This 
forces the wolves to diverge from a prey and search for a (bet-
ter) prey, as shown in Fig. 7. Another factor that helps in the 
exploration process is a random vector C, which has random 

values in the interval [0,2]. This vector assigns importance to 
a prey, i.e., to emphasize (C > 1) or de-emphasize (C < 1) 
the effect of prey in defining the distance in Eq. (1). This helps 
in providing a more random behavior throughout the optimi-
zation process, favoring local optima avoidance as well as 
exploration. It is worthwhile to mention here that unlike a, 
the values of C are not decreased linearly over the course, 
instead, random values are chosen deliberately for exploration 
not only in the initial stages but throughout the entire run. 
Different positions around the alpha wolf can be reached while 
varying the values of vectors A and C. From the formulation, it 
can be observed that vector A lies between –a to +a, since the 
random variable r1 as well as r2 is in the interval [0,1]. As a is 
decreased from 2 to 0, A lies between [–2,2]. So, when the 
value of A is between [–1,1], it enacts attacking the prey, 
whereas, in the remaining cases, it enacts leaving the prey in 

Figure 3. Possible positions in a 2D space.[17]  

Figure 4. Possible positions in a 3D hypercube.[17]  
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order to search for a better prey. As for the values of C, it lies 
between 0 and 2 and is random in nature. From Eq. (1), it can 
be observed that different weights are assigned to the distances 
of the wolf from prey, either emphasizing or de-emphasizing 
the ability of a wolf to approach a prey. 

The pseudo code of GWO is presented as below:  
1. Initialize the grey wolf population Xi (i ¼ 1, 2,…,n)  
2. Initialize a, A, and C  
3. Calculate the fitness of each search agent in the search 

space  
4. Xα ¼ the best search agent  
5. Xβ ¼ the second best search agent  
6. Xδ ¼ the third best search agent  
7. while (t < maximum number of iterations)  
8. for each search agent  

9. Update the position of the current search agent by Eq. (7) 
10. end for 
11. Update a, A, and C 
12. Calculate the fitness of all search agents 
13. Update Xα, Xβ, and Xδ 
14. t ¼ t + 1 
15. end while 
16. return Xα 

The GWO has several predominant advantages over the 
other population-based optimization algorithms, as mentioned 
here-in-under. 
a. The concept of social hierarchy helps GWO to save the best 

solutions after every iteration. 
b. The search space around the prey can be extended to multiple 

dimensions, as required by the optimization problem. 
c. The random parameters C and A help the prospective solu-

tions in hunting and searching for prey by encircling 
around them. 

Figure 5. Position updating in GWO. Note: GWO, grey wolf optimizer.[17]   

Figure 6. Exploitation (hunting).[17]  Figure 7. Exploration (searching).[17]  
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d. With decreasing values of A, half of the iterations are 
dedicated to exploitation (|A| < 1) and the other half is 
dedicated to exploration (|A|> 1). 

e. It has only two adjustable parameters, i.e., a and C. 
This algorithm is now applied for parametric optimization 

of two AWJM processes and the derived optimal solutions 
are compared with those already attained by the other 
population-based algorithms. The flow chart of GWO is 
exhibited in Fig. 8. 

Results and Discussion 

A MATLAB code is developed based on the mathematical 
models described in the previous sub-sections and is adopted 
to determine the optimal parametric settings of two AWJM 

processes. The corresponding source code of GWO is 
subsequently run on MATLAB R2011a, 4.00 GB RAM, 32-bit 
OS and 2.30 GHz processor operating platform. In the first 
example, based on an empirical model developed by 
Hashish,[1] an attempt is made to maximize MRR with respect 
to several defined constraints. In the second example, two 
AWJM responses, i.e., MRR and SR are simultaneously opti-
mized with respect to the constrained values of some of the pro-
cess parameters. In this example, for multi-objective 
optimization of the responses, the developed Pareto front will 
provide a non-dominated set of solutions. The scatter 
diagrams will also help in investigating the influences of the 
considered AWJM process parameters on the responses and 
guiding the process engineers in setting the optimal parametric 
combinations for achieving enhanced machining performance. 

Figure 8. Flowchart of GWO. Note: GWO, grey wolf optimizer.   
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Example 1 

It was already mentioned that AWJM is a hybrid NTM process 
combining the material removal mechanisms of both AJM and 
WJM processes as it uses a high velocity jet of abrasive parti-
cles mixed with water as the cutting tool. A stream of fine 
abrasive particles is propelled by a high velocity waterjet, 
which gives the mixture a high momentum when it strikes 
the workpiece surface. The important control parameters of 
an AWJM process can be classified as hydraulic parameters: 
water pressure and water flow rate; abrasive parameters: type, 
size, shape and flow rate of abrasive particles; and cutting 
parameters: traverse rate and stand-off-distance. Pawar and 
Rao[7] considered the mathematical model as developed by 
Hashish,[1] depicting the interrelationship between MRR and 
five control parameters of an AWJM process. The decision 
variables (control parameters), objective function and 
constraints considered in that model are given as below: 

Decision variables: Diameter of abrasive water-jet nozzle 
(dawn) (in mm), feed rate of nozzle (fn) (in (mm/s), mass flow 
rate of abrasives (Ma) (in kg/s), water-jet pressure at nozzle 
exit (Pw) (in MPa), and mass flow rate of water (Mw) (in kg/s) 

Objective function: Maximize MRR (Z) 

Z ¼ dawn fnðhc þ hdÞ ð8Þ

where hc is the indentation depth due to cutting wear, as given 
by Eqs. (9) and (10). 

hc ¼
1:028� 104:5n

Ckq0:4
a

� �
d0:2

awnM0:4
a

f 0:4
n

� �
MwP0:5

w
Ma þMw

� �

�
18:48K2=3

a n1=3

C1=3
k f 0:4

r

 !
MwP0:5

w
Ma þMw

� �1=3

; if at � a0

ð9Þ

hc ¼ 0; if at � a0 ð10Þ

hd is the indentation depth due to deformation wear, as 
given in Eq. (11). 

hd ¼
gadawnMa½K1MwP0:5

w � ðMa þMwÞvac�
2

ð1570:8rfwÞd2
awn fnðMa þMwÞ

2
þ ðK1CfwgaÞ

½K1MwP0:5
w � ðMa þMwÞvac�MaMwP0:5

w

ð11Þ

a0 �
0:02164C1=3

k f 0:4
r

K2=3
a n1=3

 !
Ma þMw

MwP0:5
w

� �1=3

degreesð Þ ð12Þ

at �
0:389� 10� 4:5q0:4

a Ck

n

� �
d0:8

awn f 0:4
n ðMa þMwÞ

M0:4
a MwP0:5

w

� �

degreesð Þ

ð13Þ

vac ¼ 5p2 r2:5
ew

q0:5
a

1 � v2
a

EYa
þ

1 � v2
w

EYw

� �2

mm=sð Þ ð14Þ

K1 ¼
ffiffiffi
2
p
� 104:5n ð15Þ

Ck ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3000rfw f 0:6

r
qa

s

mm=sð Þ ð16Þ

Ka ¼ 3 ð17Þ

Constraint 
Constraint is on power consumption, which is given by 
Eq. (18). 

1:0 �
PwMw

Pmax
� 0 ð18Þ

Descriptions of various symbols appearing in Eqs. (8) to 
(18) are given in Table 1. 

Variable bounds 
The bounds for the five considered variables are given in 
Eqs. (19)–(23). 

50 � Pw � 400 ð19Þ
0:5 � dawn � 5 ð20Þ
0:2 � fn � 25 ð21Þ

0:02 � Mw � 0:2 ð22Þ
0:0003 � Ma � 0:08 ð23Þ

These lower and upper bounds of the control parameters 
act as constraints to the optimization problem. Considering 
values for parameters spanning the whole real domain is 
infeasible in terms of technology as well as process capability. 
In order to model the process, a fixed range for parameters is 
required for conducting a finite number of experiments, while 
keeping in mind the technology as well as process constraints. 

Hashish[1] adopted GA technique in order to find out the 
maximum value of MRR as 90.257 mm3/s and observed the 
following settings for abrasive water-jet nozzle diameter, feed 

Table 1. Values of constants and parameters in Example 1. 
Notation Description Unit Value  

qa Density of abrasive particles kg/mm3 3.95 � 10−6 

va Poisson ratio of abrasive particles  0.25 
EYa Modulus of elasticity of abrasive 

particles 
MPa 350,000 

fr Roundness factor of abrasive particles  0.35 
fs Sphericity factor of abrasive particles  0.78 
ga Proportion of abrasive grains 

effectively participating in 
machining  

0.07 

vw Poisson ratio of work material  0.20 
EYw Modulus of elasticity of work material MPa 114,000 
rew Elastic limit of work material MPa 883 
rfw Flow stress of work material MPa 8,142 
Cfw Drag friction coefficient of work 

material  
0.002 

n Mixing efficiency between abrasive 
and water  

0.8 

Pmax Allowable power consumption value kW 56   

Table 2. Single objective optimization results for Example 1. 
Method dawn fn Mw Pw Ma α0 α1 hc hd MRR Power  

GA[1]  3.726  23.17  0.141  398.3  0.079  0.384  0.572  0  1.045  90.257 56 
SA[19]  2.9  15  0.138  400  0.08  0.385  0.378  2.97  2.04  218.19 56 
TLBO[7]  5.0  5.404  0.141  400  0.07  0.379  0.350  5.694  3.238  239.54 56 
GWO  5.0  10.43  0.139  399.9  0.079  0.3847  0.3845  4.1604  1.7387  307.639 56 

GA, genetic algorithm; GWO, grey wolf optimizer; MRR, material removal rate; SA, simulated annealing; TLBO, teaching-learning-based optimization.   
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rate of nozzle, mass flow rate of water, water-jet pressure at 
nozzle exit, mass flow rate of abrasives as 3.726 mm, 
23.17 mm/s, 0.141 kg/s, 398.3 MPa, and 0.079 kg/s respectively. 
On the other hand, Paul et al.[19] applied SA technique for 
solving the same constrained single-objective optimization 
problem and derived the settings for the considered process 
parameters as 2.9 mm, 15 mm/s, 0.138 kg/s, 400 MPa, and 
0.08 kg/s respectively, with an improvement in MRR value, 
from 90.257 to 218.19 mm3/s. The application of TLBO 
algorithm[7] observed a further increment in MRR value to 
239.54 mm3/s, with an optimal parametric setting as 5 mm, 
5.404 mm/s, 0.141 kg/s, 400 MPa, and 0.07 kg/s. In this paper, 
GWO is employed to determine the optimal combinations of 
AWJM process parameters in an attempt to achieve a higher 
MRR value. The derived results are presented in Table 2, along 
with the comparison of the optimal solutions with those as 
attained by the other algorithms. It shows that for GWO, there 
is a remarkable improvement in MRR value. Figure 9 shows 
the convergence diagram of both GWO and TLBO[7] 

algorithms and it is clearly observed that GWO converges 
quite fast towards the optimal MRR value. 

In Fig. 10, scatter plots are generated in order to show the 
variations in MRR with varying values of different AWJM 
process parameters. These plots provide a better insight into 

Figure 10. Variations in MRR with different AWJM process parameters. Note: AWJM, abrasive water-jet machining; MRR, material removal rate.   

Figure 9. Convergence diagram of GWO as compared to TLBO algorithm. Note: 
GWO, grey wolf optimizer; MRR, material removal rate; TLBO, teaching-learning- 
based optimization.   
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how an output response behaves with variations in several 
process parameters, as opposed to surface plots, where only 
variation of a response with respect to a particular process 
parameter is portrayed whilst other parameters are kept 
constant. From these scatter plots, it can be observed that there 
is a sharp edge in the trend of MRR with variations in 
diameter of abrasive water-jet nozzle and nozzle feed rate, as 
already investigated by Hashish.[1] In AWJM process, if the 
angle of impingement at the top of the surface (αt) exceeds 
the critical impact angle (αo), it is then assumed that there is 
no material removal due to cutting wear, and material removal 
only occurs due to deformation wear. The angle of impinge-
ment is a dependant variable (not a process parameter) as its 
value changes over the course of iterations with the varying 
values of other parameters. Hence, a sudden drop in MRR is 
observed in Fig. 10, as the angle of impingement exceeds the 
critical impact angle. These plots thus show a range of values 
for the considered process parameters, where MRR is the 
maximum, just before the critical impact angle (i.e., the 
moment after which MRR drastically drops). From the results 

obtained by GWO in Table 2, it can be observed that the angle 
of impingement is just less than the critical impact angle, when 
the maximum MRR is attained. From Fig. 10, it can also be 
observed that MRR increases with the increase in the values 
of mass flow rate of the abrasives, water pressure at nozzle 
and mass flow rate of water. These scatter plots will be of 
immense help to the process engineers and operators for 
choosing the best parametric mix so as to achieve maximum 
MRR value. 

Example 2 

Yue et al.[20] performed an experimental investigation on a 
radial mode abrasive water-jet turning operation of 96% 
alumina ceramic to explore the influences of various AWJM 
process parameters (i.e., water pressure, jet feed speed, 
abrasive mass flow rate, surface speed and nozzle tilted angle) 
on MRR and SR. Table 3 exhibits different process parameters 
and their levels as set for the said machining operation. Based 
on the experimental data and using RSM technique, the 
following two non-linear regression models were developed 
which are subsequently employed for multi-objective 
optimization of AWJM responses and development of the 
related optimal Pareto front. 

MRR ¼ 3814:35 þ 943:5x1 � 530:28x2 þ 745:01x3

þ 154:83x4 � 193:65x5 þ 551:62x1x3 þ 284:87x1x5

� 147:61x2x5 þ 225:72x3x4 þ 345:29x2
2 � 430:00x2

4

ð24Þ
Ra ¼ 3:78 þ 0:31x1 þ 0:04x2 � 0:38x3 þ 0:087x4

þ 0:046x5 � 0:24x1x2 � 0:067x4x5 � 0:17x2
2

þ 0:17x2
3 þ 0:14x2

5

ð25Þ

Yue et al.[20] applied sequential approximation optimization 
technique to optimize both MRR and SR, i.e., maximize MRR 
and minimize SR simultaneously. The optimal parametric 
settings were derived as water pressure ¼ 310 MPa, jet feed 
speed ¼ 0.25 mm/s, abrasive mass flow rate ¼ 11.5 g/s, surface 
speed ¼ 6 m/s, and nozzle tilted angle ¼ 71°. At these optimal 
settings, the MRR and SR were obtained as 5441.96 µm3/μs 
and 3.41 µm respectively. However, in this type of multi- 
objective optimization problem, weight (relative importance) 
assigned to each of the responses plays an important role. 
Allocation of different weights to different responses may 
often lead to changing values of the optimal parametric 
settings. The technique adopted by Yue et al.[20] did not 
provide any guidance for choosing the weights of the 
responses. For this example, an optimal Pareto front is thus 
generated so as to provide a set of non-dominated solutions, 
which may guide the process engineers in determining 
different combinations of weights for the responses, and these 
solutions being non-dominated, make each solution as the 
best one. 

In this example consisting of simultaneous optimization of 
both MRR and SR, using GWO, MRR is maximized at the first 
run, and the sets of all the points generated throughout the 
iterations are collected. These sets of points (parametric 
settings) show a convergence towards the maximum possible 

Table 3. Different process parameters in Example 2. 

Parameter Symbol 

Coded levels. 

−1 0 +1  

Water pressure (P) (MPa) x1  190  250  310 
Jet feed speed (u) (mm/s) x2  0.05  0.15  0.25 
Abrasive mass flow rate (ma) (g/s) x3  3.5  7.5  11.5 
Surface speed (Vs) (m/s) x4  1.5  5.5  9.5 
Nozzle tilted angle (β) (°) x5  45  75  105   

Table 4. A complete set of non-dominated solutions. 
MRR  
(µm3/μs) 

SR  
(µm) 

P  
(MPa) 

u  
(mm/s) 

ma  
(g/s) 

Vs  
(m/s) 

β  
(°)  

6769.597  4.10484 310  0.05  11.5  7.267935  115 
6764.853  4.099072 310  0.05  11.5  7.279354  114.2059 
6760.95  4.094221 310  0.05  11.5  7.253721  113.553 
6754.199  4.087944 310  0.05  11.5  7.42053  112.5231 
6681.881  4.01909 310  0.05  11.5  6.559457  102.5815 
6648.86  3.988563 310  0.05  11.5  6.810854  95.7276 
6352.671  3.885571 299.5145  0.05  11.5  7.181496  92.64644 
5899.308  3.740344 286.5486  0.05  10.71676  6.648161  80.29241 
5144.083  3.481679 256.5656  0.05  11.5  5.93455  94.47595 
4253.454  3.081091 216.3119  0.05  11.5  6.560403  61.25093 
3766.111  2.847155 190  0.05  10.72347  6.149893  58.74609 
3701.705  2.84601 190.789  0.05  10.59956  6.116283  70.46296 
3687.107  2.835886 190  0.05  10.7109  6.117306  68.30723 
3532.209  2.786867 190  0.05  10.98489  4.051548  54.70002 
3404.177  2.780198 191.126  0.05  11.5  3.881486  57.28654 
3397.165  2.773943 190  0.05  11.5  3.803904  53.30112 
3274.123  2.748508 190  0.05  10.63846  2.601239  58.0797 
3268.064  2.747387 190  0.05  10.74025  2.66389  58.33875 
3228.336  2.74207 190  0.05  10.97474  2.568462  54.82565 
3185.448  2.740137 190  0.05  10.46431  2.133598  58.45391 
3114.819  2.730917 190  0.05  11.04623  2.041321  50.17717 
2984.425  2.715399 190  0.05  10.72999  1.5  55.15272 
2925.517  2.709523 190  0.05  10.93446  1.5  57.09611 
2891.393  2.706028 190  0.05  11.16296  1.5  55.07382 
2867.242  2.705975 190  0.05  11.30765  1.619419  58.29498 
2839.107  2.702729 190  0.05  11.38135  1.5  55.16243 
2809.658  2.701205 190  0.05  11.47643  1.5  55.90055 
2804.542  2.701011 190  0.05  11.5  1.5  55.8091 
2800.53  2.700773 190  0.05  11.5  1.5  56.29404 
2797.571  2.700624 190  0.05  11.5  1.5  56.65165 
2794.179  2.70048 190  0.05  11.5  1.5  57.06175 
2791.079  2.700375 190  0.05  11.5  1.5  57.43642 
2787.672  2.700287 190  0.05  11.5  1.5  57.8483 
2785.61  2.700249 190  0.05  11.5  1.5  58.09755 

MRR, material removal rate; SR, surface roughness.   
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MRR. During the second run, SR response is again separately 
minimized using the same algorithm to obtain similar sets of 
points. These points show a trend towards the minimum 
achievable SR value. These two datasets are then combined 

together and an optimal Pareto front is thus generated for 
MRR versus SR, i.e., a set of non-dominated solutions is 
developed, which simultaneously has the best (maximum) 
MRR and the best (minimum) SR. A set of 34 such solution 
sets is provided in Table 4 and the full set of the Pareto optimal 
solutions is plotted in Fig. 11. Two extreme solutions are 
shown below: 
a. For highest MRR of 6769.597 µm3/μs and highest SR 

of 4.10484 µm, the parametric settings are water 
pressure ¼ 310 MPa, jet feed speed ¼ 0.05 mm/s, abrasive 
mass flow rate ¼ 11.5 g/s, surface speed ¼ 7.267935 m/s, 
and nozzle tilted angle ¼ 115°. 

b. For least MRR of 2785.61 µm3/μs and least SR of 
2.700249 µm, the parametric combinations are water 
pressure ¼ 190 MPa, jet feed speed ¼ 0.05 mm/s, abrasive 
mass flow rate ¼ 11.5 g/s, surface speed ¼ 1.5 m/s, and 
nozzle tilted angle ¼ 58.09755°. 
The intermediate settings also provide a compromise 

between the two responses, which will serve as a guide to 
the process engineers and operators for selecting the optimal 
parametric settings. In order to study variations of MRR and 
SR with changing values of different AWJM process para-
meters, scatter plots are also developed, and the trends 
obtained using GWO are compared with those predicted by 
Yue et al.[20]. 

From Fig. 12(a), it can be observed that MRR increases with 
water pressure. As the water pressure increases, there is a 

Figure 11. A complete set of Pareto points. Note: GWO, grey wolf optimizer; 
MRR, material removal rate.   

Figure 12. Variations in MRR with AWJM process parameters for Example 2. Note: AWJM, abrasive water-jet machining; MRR, material removal rate.   
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certain increase in the velocity of the abrasive particles striking 
the workpiece surface, which in turn, implies that abrasive 
particles with higher kinetic energy imparted on the surface 
resulting in an increase in depth of cut as well as MRR. 
However, MRR decreases with increase in jet feed speed, as 
shown in Fig. 12(b). As the velocity distribution is not clearly 
known, it has been assumed by the past researchers[21] to 
follow a Gaussian distribution, with the velocity of particles 
in the core being maximum and bare minimum at the bound-
ary. So, the particles in the core having higher kinetic energy 
participate in the maximum amount of material removal, 
along with the boundary particles enhancing the erosion. As 
the jet feed speed decreases, the exposed time of the jet to 
the surface increases, which in turn, results in more material 
removal and more penetration. In Fig. 12(c), MRR is also 
observed to have an increasing trend with respect to abrasive 
mass flow rate. However, at higher flow rates, the cutting 
efficiency decreases due to increase in the abrasive interac-
tions. For surface speed, it can be observed from Fig. 12(d) 
that the optimal surface speed can be maintained around 6.5  
∼ 8 m/s. 

The MRR also increases as the nozzle tilted angle increases, 
as observed in Fig. 12(e). For SR response, it can be observed 
from Fig. 13(a), 13(b), and 13(d) that it reaches its minimum 
at lower values of water pressure, jet feed speed and surface 

feed. However, an increase in abrasive mass flow rate helps 
in producing a better surface finish, as shown in Fig. 13(c). 
For nozzle tilted angle, a value around 50° ∼ 70° can be set 
for attaining thebest surface finish, as indicated in Fig. 13(e). 

Conclusion 

In this paper, an attempt is made for parametric optimization 
of two AWJM processes using an almost unexplored optimiza-
tion tool in the form of GWO. The results derived from both 
the single objective and multi-objective optimization problems 
are observed to be quite satisfactory when compared to other 
algorithms, such as SA, GA, and TLBO. The developed 
convergence diagram shows a high convergence rate of this 
algorithm towards the optimal solution, owing to the effects 
of its different control parameters (a and C), which maintain 
a good balance between exploration and exploitation. This 
algorithm is also proved to be faster in tracking down the prey 
(finding out the optimal solution), because of the presence of a 
social hierarchy of grey wolves. The developed scatter dia-
grams, exhibiting the variations of different responses with 
respect to the changing values of various AWJM process para-
meters would be of great help to the process engineers and 
operators in setting those parameters as their optimal levels 
so as to achieve maximum machining performance. As an 

Figure 13. Variations in SR with AWM process parameters for Example 2. Note: AWJM, abrasive water-jet machining; SR, surface roughness.   
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empirical formulation and results derived by the past 
researchers are utilized in this paper, there is no scope for 
any confirmatory experiment so as to validate the solutions. 
In future, this algorithm can also be adopted for parametric 
optimization of other advanced manufacturing processes. 
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