In: Focus on Swarm Intelligence Research and Applications ISBN: 978-1-53612-452-1
Editors: B. Benhala, P. Pereira and A. Sallem © 2017 Nova Science Publishers, Inc.

Chapter 2
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ABSTRACT

Need for generation of intricate shapes on difficult-to-machine materials, better
surface finish and higher material removal rate drives towards the development of an
array of non-traditional machining (NTM) processes. Laser beam machining (LBM) is
one such NTM process where a laser beam is directed towards the workpiece surface for
material removal. With development of different NTM processes over the years, LBM
process has become the first choice for machining of metallic and non-metallic
workpieces, giving rise to the requirement to optimize its input parameters to achieve the
best machining performance. Variation in any of these parameters (lamp current, pulse
frequency, pulse width, cutting speed, assist air pressure etc.) may result in deviation in
the responses (surface finish, material removal rate, heat affected zone, conicity, kerf
etc.). Since in LBM process, there is a combination of multiple parameters, change in any
or all of these parameters has a remarkable effect on the responses. Thus, it becomes
important to study the effects of various LBM process parameters on the responses as
well as to search out the best possible combination of these parameters to attain the target
results. Several mathematical tools, like Taguchi method, desirability function, grey
relational analysis etc. have been proposed for parametric optimization of LBM
processes. In this chapter, an almost unexplored meta-heuristic in the form of shuffled
frog leaping algorithm is adopted for both single and multi-objective optimization of the
responses for two LBM processes. It is a nature inspired algorithm and mimics the
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leaping pattern of frogs in search of food. Its major advantage is that it doesnot
accumulate towards some local optima. Local exploration of frogs ensures memetic
evolution within a population, whereas, global exploration makes way for a global share
of information (memes) between the populations. As the leaping behavior of frogs is
mimicked in this algorithm, the number of iterations required to reach the global
optimum is drastically reduced. The developed scatter plots can be utilized to investigate
the variationsin LBM responses with respect to changes in different process parameters
involved. The derived results show a significant improvement in the response values as
compared to the earlier attempts for optimization of LBM processes employing other
meta-heuristics.

Keywords: laser beam machining, shuffled frog leaping algorithm, optimization, process
parameter response

1. INTRODUCTION

In this present world, emergence of new technologies along with increased human
needs has given rise to the need of extremely sophisticated products with high ergonomic
values, requiring more intricate and complex drawings and designs. Conventional
machining processes miserably fail here to provide the best results, which drive into the
development of an array of different non-traditional machining (NTM) processes capable
of providing quite accurate results. There are several NTM processes, like
electrochemical machining, electro-discharge machining, wire electrical discharge
machining, laser beam machining (LBM), electron beam machining, ion beam
machining, plasma arc machining, chemical machining, ultrasonic machining, jet
machining etc., which are currently being deployed in every sphere of industry for
generating complex shape features on different difficult-to-machine materials. Among
these, LBM process is considered to be one of the most versatile methods of machining
since it can machine a wide range of advanced engineering materials. It is widely used for
cutting, welding, drilling, marking and sintering operations. It is also effectively applied
for turning and milling operations.

Laser machining is a technology using a laser beam source which is a narrow beam
of intense monochromatic light focused on the workpiece surface to cut the required
shapes of profile on metals, non-metals, ceramics etc. It is a non-contact type of
machining process where there is no physical contact between the tool and the workpiece.
There is another unique feature about this machining process that it can machine any
material irrespective of its hardness and melting point. In this machining process, the
output of a high power laser beam is directed in a programed manner towards the
material required to be cut which transfers energy from the beam to the workpiece
surface. The mechanism behind material removal during LBM operation includes three
stages, e.g., melting, vaporizing and degrading (chemical degradation by breaking the
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bonds between atoms). The high amount of heat thus generated is absorbed by the surface
resulting melting, vaporization or formation of a chemically changed state, which is
thereupon removed from the machining zone by the flow of a high pressure assist gas jet.

Thus, LBM is a thermal process and its effectiveness on different work materials
largely depends on their thermal properties, like thermal conductivity, thermal diffusivity
etc., rather than on mechanical properties, and also to some extent on their optical
properties. Generally, work materials with low thermal diffusivity and conductivity are
well suited for this process because these properties help in concentrating the
accumulated energy at a particular place rather than flowing through the whole work
material. Since energy transfer occurs through irradiations, no mechanical forces are
involved during the cutting operation, which leads to no tool wear or machine vibration.
Hence, the material removal rate (MRR) gets independent of the mechanical factors, such
as tool force, tool chatter etc. [1].

The laser medium may be a solid (e.g., Nd:YAG or neodymium-doped yttrium-
aluminum-garmet), liquid (dye) or gas (e.g., CO,, He, Ne) [2]. Among these different
types, Nd:YAG and CO; lasers are most widely used for material machining applications.
The CO; laser has wavelength of 10 um in the infrared region. It has high average beam
power, better efficiency and good beam quality. It is quite suitable for fine cutting of
sheet metals at high speed [3]. On the other hand, Nd:YAG laser has low beam power,
but while operating on pulsed mode, high peak powers enable it to machine even thicker
work materials. Its shorter pulse duration also suits for machining of thinner materials.
Due to shorter wavelength (1 um), it can be absorbed by high reflective materials which
are difficult to machine using CO; laser [4].

An LBM operation involves several process parameters, such as assist gas pressure,
pulse width, cutting speed, pulse frequency, peak power, current etc. All these parameters
partially or completely affect the LBM process performance. Some of the quality
characteristics of interest in LBM process are MRR, machined geometry (kerf width, hole
diameter, taper), surface quality (surface roughness (SR), surface morphology),
metallurgical characteristics (recast layer, heat affected zone (HAZ), dross inclusion) and
mechanical properties (hardness, strength etc.). Experimental studies by Voisey et al. [5]
found variations in MRR at different power densities during laser drilling operation,
having a trend of first increasing and then decreasing. Lau et al. [6] showed that
compressed air could remove more material in comparison to argon inert gas during laser
cutting of carbon fiber composites. The MRR during laser machining of concretes
showed increasing trend with respect to both laser power and scan speed [7]. Chen [8]
examined the kerf width for three different assist gases, i.e., oxygen, nitrogen and argon
at high pressure, and observed that kerf width would increase with increasing laser power
and decreasing cutting speed during CO» laser cutting of 3 mm thick mild steel sheet.
Other metallurgical characteristics, such as HAZ thickness etc., also need to be
minimized during LBM operation. Decreasing power and increasing feed rate generally
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lead to decrease in HAZ [9]. Thus, in order to understand the effects of various LBM
process parameters on the responses, modeling of the complex LBM process is often
required. To help in this direction, several experimental methods, like response surface
methodology (RSM) with central composite design plan and Taguchi robust design
methodology have mostly been utilized by the past researchers. On the other hand,
analytical methods including mathematical models, such as finite difference method,
finite element method, boundary element method etc. have also been deployed to
understand the material removal mechanism of LBM process.

The complexity in machining dynamics has forced the researchers to search out the
optimal or near optimal machining conditions in discrete and continuous parametric
spaces with multi-model, differentiable or non-differentiable objective functions
(responses) employing different state-of-the-art optimization techniques. In this chapter,
an almost unexplored meta-heuristic in the form of shuffled frog leaping algorithm
(SFLA), which is a hybrid of two conventional optimization techniques and mimics the
behavioral pattern of frogs, is proposed for parametric optimization of two LBM
processes.

2. LITERATURE REVIEW

Ganguly et al. [10] integrated Taguchi method with grey relational analysis (GRA) to
determine the laser micro-drilling parameters in order to minimize two micro-drilling
defects, i.e., hole taper and HAZ width. Employing genetic algorithm (GA), Pandey and
Dubey [11] simultaneously optimized both kerf taper and SR in laser cutting of Titanium
alloy sheet. Pandey and Dubey [12] integrated a robust parameter design methodology
and fuzzy logic to investigate the laser cutting operation of Duralumin sheet so as to
improve the geometrical accuracy while simultaneously minimizing kerf width and kerf
deviations at top and bottom sides. Teixidor et al. [13] proposed a multi-criteria decision
making approach for laser milling process parameter (scanning speed, pulse intensity and
pulse frequency) selection for achieving the desired surface quality and dimensional
accuracy while using particle swarm optimization (PSO) technique. Mukherjee et al. [14]
applied artificial bee colony (ABC) algorithm for determining the optimal Nd:YAG LBM
process parameters while considering both single and multi-objective optimization of the
responses. Pandey and Dubey [15] concurrently optimized multiple responses (cut edge
surface roughness, kerf taper and kerf width) of a laser cutting process while employing a
hybrid approach combining GRA and fuzzy logic. Chaitanya and Krishna [16] applied
non-dominated sorting genetic algorithm-II (NSGA-II) for optimizing HAZ and SR in a
pulsed Nd:YAG laser cutting process while considering four input variables, i.e., laser
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power, pulse frequency, gas pressure and pulse width, and developed the Pareto optimal
set of solutions. Mishra and Yadava [17] integrated finite element method and artificial
neural network (ANN) to develop a prediction model for a laser beam percussion drilling
(LBPD) process. The GRA along with principal component analysis was adopted for
multi-objective optimization of the said LBPD process based on the data predicted by the
ANN model. Madi¢ et al. [18] performed multi-objective optimization of CO; laser
cutting process considering three responses, i.e., SR, HAZ and kerf width based on four
process parameters (laser power, cutting speed, assist gas pressure and focus position)
while employing cuckoo search algorithm. Biswas et al. [19] optimized individually as
well as simultaneously three hole qualities, i.e., hole diameter at entry, hole diameter at
exit and hole taper in a pulsed Nd:YAG laser micro-drilling process. Ranjan and Mishra
[20] determined the optimal parametric settings of a Nd:YAG laser beam machining
process for performing micro-grooving operation on hydroxyapatite.

3. SHUFFLED FROG LEAPING ALGORITHM

Shuffled frog leaping algorithm (SFLA) principally incorporates two conventional
optimization approaches, i.e., shuffled complex evolution (SCE) and PSO technique. The
main philosophy behind SCE is the natural evolution. In this algorithm, at first, the
population is divided into several sub-populations and allowed to interbreed
independently. After a defined number of evolutions, all the sub-populations are forced to
mix, and are again divided into several new sub-populations by means of shuffling. It
helps in sharing information between different sub-populations, which they have
independently developed over the course of evolution. On the other hand, PSO technique
is motivated from the simulation of social patterns of different living things, e.g., a
pattern based on the movement of ants, flocking pattern of birds etc. It involves memetic
evolution of particles as swarm towards the best solution while improving the position of
each particle based on the position of other particles with respect to the source of the
optimal result.

3.1. A Brief Description of Shuffled Frog Leaping Algorithm

It is a memetic meta-heuristic algorithm designed to perform an informed heuristic
search using a heuristic function so as to obtain solution of an optimization problem. As
its name suggests, it is dependent on a population of memes (analogous to genes, except
that information in genes can be transferred only from parent to an offspring, whereas,
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information transfer in memes has a wider aspect, like transfer of an idea which can
happen between any two individuals) to obtain an optimal result [21]. This algorithm is
based on a virtual population of frogs and mimics the movement of frogs towards their
search for the maximum food source. As it is derived from both SCE and PSO, first frogs
leap from one position to another being influenced by the position of the frog which is in
a better position from the food source and then shuffling of information among different
groups of frogs occurs to approach towards the best solution, and hence, the name
shuffled frog leaping algorithm is given to it [22].

The SFLA is based on a combination of both deterministic and random approaches.
The deterministic strategy allows it to utilize response surface information to effectively
guide the search process as in PSO algorithm, whereas, the random approach ensures
flexibility and robustness of the heuristic search process. A randomly selected population
of F frogs is generated over an entire pond. The population is partitioned into several
complexes (subsequently referred to as memeplex), which are allowed to evolve
independently in their own memeplex. All the frogs (memes) in a given memeplex share
information within that group, i.e., the frogs are influenced by the ideas of other frogs.
Thus, they undergo memetic evolution. It improves the quality of a meme and guides it
towards a better performance (by evaluating the corresponding fitness). To ensure that
the evolution is competitive, it is required that the better frogs contribute more to the
evolution than the relatively poor frogs. So, a probabilistic approach is adopted for
selecting memes for evolution inside a memeplex, where better frogs are given more
weights, i.e., have a better chance of selection for evolution. During this evolution
process, the target of the algorithm is to improve the quality of the worst frog with
respect to the local best frog and subsequently, the global best frog. After evolution, there
is a chance that the evolved frog may be of better quality or worse quality. If the evolved
frog is of better quality, it is added back to the memeplex, else a new random frog is
generated and added in place of the worse frog. The improved information after evolution
is immediately available for subsequent iterations of the evolution. After a certain
number of evolutions, the memeplexes are forced to mix together (i.e., global share of
information) by a shuffling process and the population is again divided into several
memeplexes. This global sharing of information (or in genetic term, cross-hybridization
of frogs/ideas) expedites the searching process. It also ensures a proper cultural evolution
without presence of any regional bias. One of the prime advantages of SFLA is its ability
not to be get stuck in some local optima, rather move towards the global optima at a
faster rate, owing to the memetic evolution within memeplexes as well as between
memeplexes [23, 24].
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3.2. Steps Involved in SFLA

The procedural steps of SFLA are presented in details here-in-under.

Global exploration

1. Initialize a virtual population of F frogs, and select m (number of memeplexes)
and »n (number of memes in each memeplex) such that F = mxn.

2. Define d as the number of decision variables such that an i" frog can be
represented by a vector U(i) = (Ui,U»,Us,...,Us) and calculate the performance
value (i.e., fitness f{i)) of each frog U(i).

3. Rank the frogs in decreasing order of their performance values such that the first
rank represents the frog with the best fitness value. Record the position of the
best frog as P.

4. Divide frogs into m memeplexes. This division must be based on the order of
their ranks, serially, i.e., rank 1 in 1 memeplex, rank 2 in 2nd memeplex and so
on, so that each memeplex has a fair share of the best and the worst frogs.

5. Local exploration

i) Set im = 0 where im counts the number of memeplexes and will be compared
with the total number m of memeplexes. Set iN = 0 where iN counts the
number of evolutionary steps and will be compared with the maximum
number N of steps to be completed within each memeplex.

ii) Construct a sub-memeplex. As mentioned earlier, the aim of a frog is to leap
towards an optimal solution, while improving their memes through evolution.
The sub-memeplex selection criterion is to allocate more weights to the frogs
with higher fitness values and less weight to the frogs with lower fitness
values, using a probabilistic approach, where p; denotes the probability of
selection of /™ frog to the sub-memeplex.

_2(n+1-))

for all j=1,2,..., 1
n(n+1) oraty " M

J

It ensures that the frog with higher fitness value has a greater chance to
be selected in the sub-memeplex. Here, ¢ distinct frogs are selected randomly
from each memeplex. Record the position of the best frog and the worst frog
in the sub-memeplex as Py and P,.

ii1) Improve the position of the worst frog using the following equation,step size
S = min{int[rand(P, —Pw)], Smax} for a positive step andstep size S =
max {int[rand(P» —Py)], —Smax} for a negative step, where rand is a random
number between 0 and 1, and Sy is the maximum step allowed for leaping
of an infected frog. The new position is then computed by U(g) = P, + S. If
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vi)

the new position is within the feasible search region, then calculate the new
fitness value f{g). Otherwise, go to step (iv). If the new f{g) is better than the
previous fitness value of the frog, then replace the old U(g) with the new
U(q), and proceed to step (vi). Otherwise, go to step (iv).

If step (iii) cannot produce a better result, then the step and the new position
are again calculated with respect to the global best frog, as follows, step size
S = min{int[rand(P. —Py)], Smax} for a positive step and step size S =
max {int[rand(Px —Py)], —Smax} for a negative step, and the new position is
computed as U(qg) = P, + S. If the new U(g) is within the feasible search
space, compute its fitness value or else go to step (v). If the new f(q) is better
than the previous value, then replace the old U(g) with the new U(g) and go
to step (vi). Otherwise, go to step (v).

If the new position obtained is either infeasible or is not better than the old
position, a new randomly generated frog r replaces the worst frog with U(g)
=rand flq) =f(r).

Upgrade the memeplex and proceed evolution for a definite number of
iterations. Repeat steps (i)-(v) for all m memeplexes.

6. Shuffle the memeplexes. Sort the population again in order of decreasing fitness

values and repeat steps (1)-(5).

7. Stop the iteration after a definite number of runs.
The pseudo code of SFLA is provided as below:

Begin;

Generate random population of F solutions (frogs);

For each individual i€F, calculate fitness(i);

Sort the population F in descending order of their fitness;
Divide F'into m memeplexes;

For each memeplex, determine the best and the worst frogs;
Improve the worst frog position using appropriate equations;
Repeat for a specific number of iterations;

End;

Combine the evolved memeplexes;

Sort the population F' in descending order of their fitness;
Check if termination = true;

End;



Parametric Optimization of Laser Beam Machining Processes ... 29

3.3. Optimization Parameters in SFLA

It is evident from the framework of SFLA model that there are several significant
parameters on which its final solution depends. Thus, selection of the best possible
parameters for achieving the most satisfactory optimization results becomes quite critical.
It can be noticed that SFLLA has five parameters, i.e., number m of memeplexes, number n
of frogs in a memeplex, number g of frogs in a sub-memeplex, number N of evolutions in
a memeplex between two successive shufflings, and maximum step size Syax allowed
during an evolutionary step.

Theoretically, the sample size F (i.e., number of memeplexes multiplied by the
number of frogs in each memeplex) is supposed to be the most influential parameter. The
chance of reaching a global optimal value increases with increasing population size.
However, a correct balance must be maintained between the values of m and n. A large
value of m and a small value of n mean very less amount of local change of information,
and the purpose of SFLA is to build up a strategy to take into consideration both the
global and local search processes. So, while selecting the value for m, the value of » must
not be selected too less than m. The response of the algorithm with respect to parameter
¢, i.e., number of frogs in a sub-memeplex, is that the local evolution will be slow for
higher values of ¢, resulting in longer times to reach the optimal solution. The other
parameter, N, can take any value larger than 1. If N is small, the memeplexes will shuffle
frequently, reducing the information exchange at local level. If N is too large, there will
be too much of idea changes at local level so that each memeplex will turn into a local
optimal. The last parameter is the maximum step size Syqr. It is the maximum leaping
ability of a frog after it is being infected by an idea. It decides the amount of global
exploration ability of a frog. Setting it to a smaller value reduces the sole purpose of
global exploration, however setting it to a larger value, may result in missing the actual
optima. Hence, a fine balance is to be sought out for selection of S, value. Although all
these are theoretical, there is no proper guidance for selection of these parameter values.
In this chapter, an experimental approach is provided to investigate the influence of these
parameters on the optimization performance of SFLA. Figures 1-3 exhibit a pictorial
representation of SFLA. On the other hand, Figure 4 demonstrates the flowchart of SFLA
and Figure 5 represents the local search flowchart of this algorithm.

Figure 1. Population of frogs divided into memeplexes.
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Figure 2. Local evolution: Idea sharing within memeplex.

Figure 3. Global exploration: Shuffling of memeplexes.
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Figure 4. SFLA flowchart.
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[ Determine hest, worstand global best frog 1

positions, and apply appropriate equations

Is the newly generated frog
better than the worst onein
the mermeplex?
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Figure 5. Local search flowchart of SFLA.

4. LASER BEAM MACHINING PROCESS OPTIMIZATION USING SFLA

Based on the pseudo code of SFLA as stated above, the corresponding MATLAB
code is subsequently developed in order to validate the effectiveness and potentiality of
SFLA for parametric optimization of two LBM processes.

4.1. Example 1

Kuar et al. [25] performed laser beam micro-drilling operation on zirconia (ZrO»)
ceramics of size 20x20 mm and 1 mm thickness, and investigated the influences of four
process parameters, i.e., lamp current, pulse frequency, air pressure and pulse width on
HAZ thickness and taper of the drilled holes. Each of those four process parameters was
set at five different levels, as shown in Table 1. In order to determine the multi-
parametric optimal combinations for pulsed Nd:YAG laser beam micro-drilling process
on ZrO; ceramics, experiments were conducted according to a central composite rotatable
second-order design plan based on RSM technique, and the following two equations were
developed for HAZ thickness and taper.
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Table 1. Process parameters and their settings for example 1

Parameter Unit Symbol Levels

-2 -1 0 1 2
Lamp current A X1 17 19 21 23 25
Pulse frequency | kHz X2 1 2 3 4 5
Air pressure kg/cm? X3 0.6 1 1.4 1.8 |22
Pulse width % X4 2 6 10 14 18

Yiaz = 0.3796 + 0.07888x;— 0.04120x,— 0.04301x3 — 0.00570xs + 0.02146x> —
0.00957x2% + 0.00266x3*— 0.01234x4* — 0.0228x1x2— 0.00679x1x35 — 0.03158x1xs +
0.01341x2x3— 0.00983x2x5 — 0.00497x3x4 (2)

Yraper = 0.07253 + 0.00912x; + 0.00887x,— 0.00606x3 + 0.00449xs + 0.00153x,* +
0.00225x2% + 0.00233x3> + 0.00399x4> + 0.00431x1xo— 0.00646x1x35 — 0.00519x1x4—
0.00110x2x3— 0.00023x2x4 — 0.07253x3x4
3
These two second-order RSM-based equations are separately optimized applying
SFLA within the respective ranges of values for the considered process parameters. The
results of single objective optimization are provided in Table 2.

Table 2. Results of single objective optimization for example 1

Ovtimizati
PHMIZAHON Response | Optimal value | x; X2 X3 X4
method
Desirability HAZ 0.0675 17 2 2 2
function [25] Taper 0.0319 17 2 0.6 2
GA HAZ 0.1066 19 1 2 2
Taper 0.0843 23.86 2.29 1.38 13.92
PSO HAZ 0.0604 18 1.25 2.12 24
Taper 0.0458 20.23 4.10 1.81 11.95
HAZ 0.0324 17 1.5 2 2
ACO
Taper 0.0377 18.04 4.47 1.73 14.18
HAZ 0.0174 17 4.8 2.1 2
ABC
Taper 0.0202 18.2 1.25 0.6 2
SFLA HAZ 0.0000010 17.23053 | 1.00266 |2.19366 |2.49103
Taper 0.0000012 17.24257 [1.02715 [2.14176 |2.22312

The single objective optimization results of Table 2 depict that SFLA performs fairly
well in comparison to other algorithms, such as GA, PSO, ant colony optimization (ACO)
and ABC [14]. It thus clearly outperforms the other population-based algorithms while
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achieving the best possible solutions. The mean and standard deviation values of the
optimal solutions as derived employing the considered algorithms are also provided in
Table 3. Low standard deviation for SFLA indicates that the derived optimal solutions are
highly repetitive in nature and close to the target values.

Multi-objective optimization of the responses for the considered LBM process is also
attempted using SFLA and the achieved results are compared with those obtained from
the other algorithms. For multi-objective optimization of the responses, the following
objective function is developed:

s =MX Yiaz X Yruper @)
HAZ._; Taper,

min min

where wi and w» are the respective weights allotted to two different responses, i.e., HAZ

and taper. The multi-objective optimization results for this example are tabulated in Table
4.

Table 3. Mean and standard deviation values for single objective
optimization results

Optimization method | Response Optimal value Mean Stal?da?rd
deviation
GA HAZ 0.1066 0.1231 0.0102
Taper 0.0843 0.1056 0.0151
PSO HAZ 0.0604 0.0883 0.0212
Taper 0.0458 0.0662 0.0138
HAZ 0.0324 0.0505 0.0129
ACO
Taper 0.0377 0.0507 0.0098
ABC HAZ 0.0174 0.0301 0.0094
Taper 0.0202 0.0346 0.0092
SFLA HAZ 0.0000010 0.00000458 0.000005
Taper 0.0000012 0.00003030 0.000044

Table 4 exhibits the multi-objective optimization results for three cases considering
different weight combinations for HAZ and taper. These results indicate a significant
improvement in the optimal solutions of multi-objective optimization using SFLA as
compared to other algorithms, like ABC algorithm [14]. The relevant scatter plots of
Figures 6-7 are developed in order to study the variations of the responses with respect to
four LBM process parameters. These plots show the quick convergence of SFLA towards
the optimal solutions. As opposed to response surface plots, scatter plots are not
portrayed by holding any parametric value constant and thus indicate the true trend of the
output responses with respect to different process parameters.
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Table 4. Multi-objective optimization results for example 1

Optimal
Case Response phma X X2 X3 X4
value
irabili HAZ 0.1296
Desirability 17 162|104 |2
function [25] Taper 0.0400
ABC algorithm
“wi=05 |HAZ 0.1019
Case 1: w1 =0.5 1718 |15 133 |2
and w>=0.5 Taper 0.0248
“wi=09 |HAZ 0.0281
Case2:w1=0.9 17.2 15 216 |2
and w>=0.1 Taper 0.3733
“wi=0.1 |HAZ 03124
Case 3:w1=0.1 18.66 |134 120 |7.95
and w,=0.9 Taper 0.0329
SFLA
Case 1: wi1=0.5 |HAZ 0.07352 17 ! 126 )
and w,=0.5 Taper 0.00057
Twi= HAZ 0.00434
Case 2w, 17.2056 | 1.0405 |2.0254 |2.0122
0.9and w,=0.1 | Taper 0.29960
“wi=0.1 |HAZ 2
Case 3:wi=0.1 029899 1194696 |4.1153 |1.0520 |6.8233
and w>=0.9 Taper 0.02526

From Figure 6, it is evident that HAZ thickness tends towards optimality with
decrease in pulse frequency, pulse width and lamp current. However, with increase in
assist air pressure, HAZ tends towards its minimum value. Similarly, from Figure 7, it
can be observed that taper moves towards its optimal value with decrease in pulse
frequency and increase in lamp current. Air pressure and pulse width show almost similar
patterns towards achieving the optimal taper value, i.e., minimal taper can be obtained
while maintaining air pressure and pulse width nearer to their central values in the
combinational settings. Similar types of observations were also investigated by Kuar et
al. [25].

In this chapter, a maiden attempt is also taken to provide some valuable guidance on
how to identify the correct algorithmic parameter settings while using SFLA as an
effective optimization tool. Thus, the variations in the optimal solutions are studied while
changing the settings of different algorithmic parameters in SFLA. The top two
performances for each parametric setting from a set of simulation runs are summarized
through Tables 5-8.
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Table 5. Variation in optimal solution with respect to sample size

X1 X2 X3 X4 Response (HAZ)

Population size = 100

17.5235 1.0015 2.1982 2.0036 0.0000192

17.5081 1.0004 2.1930 2.0177 0.0000183
Population size = 200

17.2839 1.0545 2.1961 2.2527 0.0000180

17.3543 1.0056 2.1533 2.1382 0.0000076
Population size = 500

17.2896 1.0678 2.1553 2.0693 0.0000021

17.0566 1.1320 2.1383 2.1953 0.0000019

Table 6. Variation in optimal solution with respect to

maximum step size

X1 X2 X3 X4 Response (HAZ)

Maximum step size = 2

17.3145 1.0631 2.1664 2.0771 0.0000015

17.2305 1.0026 2.1936 24910 0.0000010
Maximum step size = 3

17.4893 1.0101 2.1960 2.0314 0.0000040

17.3227 1.0249 2.1612 2.1608 0.0000013
Maximum step size = 5

17.3335 1.0435 2.1671 2.1061 0.0000051

17.1332 1.1374 2.1818 2.1970 0.0000066

Table 7. Variation in optimal solution with respect to

sub-memeplex size

X X2 X3 X4 Response (HAZ)

Sub-memeplex size = 3

17.2667 1.1084 2.1898 2.3703 0.0000019

17.5176 1.0007 2.1945 2.0037 0.0000035
Sub-memeplex size = 4

17.5077 1.0109 2.1998 2.0088 0.0000024

17.4907 1.0067 2.1971 2.0435 0.0000018
Sub-memeplex size =5

17.3335 1.0435 2.1671 2.1061 0.0000051

17.3360 1.0371 2.1768 2.1536 0.0000016
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Tables 5-8 depict that selection of the most appropriate algorithmic parameters for
SFLA plays an important role in achieving the optimal solutions. The more is the
population size, the better are the results. For maximum step size, the lesser is the step
size, the more accurate is the solution. Increasing step size may lead to loss of the actual
optimal solutions. The sub-memeplex size, as stated earlier, should not be too small or
too large and thus, choosing a proper sub-memeplex size is also critical for better
performance of this algorithm. Lastly, the number of evolutions in a memeplex between
successive shufflings must not be too small because it will destroy the whole notion of
local exchange of ideas. However, selection of too large a value may often lead to slower
convergence of the solutions.

Table 8. Variation optimal solution with respect to
number of local evolutions

X1 X2 X3 X4 Response (HAZ)

Number of local evolutions =2

17.0407 1.0462 2.1063 2.3710 0.0000313

17.2543 1.0266 2.1772 2.3240 0.0000183
Number of local evolutions = 3

17.2617 1.0226 2.1792 2.3300 0.0000070

17.3212 1.0490 2.1495 2.0524 0.0000112
Number of local evolutions = 5

17.4828 1.0138 2.1914 2.0161 0.0000025

17.4147 1.0308 2.1897 2.0801 0.0000018

4.2. Example 2

Dhupal et al. [26] performed laser turning operation for micro-groove generation on
cylindrical ceramic materials using a CNC-controlled pulse Nd:YAG laser machining
system. A cylindrical aluminium oxide workpiece of size of 10 mm diameter and 40 mm
length was taken, and the laser beam was focused using a lens having a focal length of 50
mm. The focal plane of the laser beam was set at the surface of the rotating cylindrical
workpiece. The laser beam spot size was approximately 0.1 mm. The specimen was
micro-grooved using multiple laser pulses with actual peak powers ranging between 0.7
and 5 kW. It was held by a collet attached to a stepper motor which would help to rotate
the collet and job simultaneously. A micro-controller was utilized along with a stepper
motor to achieve the desired rotation in anti-clockwise or clockwise direction. The Z-axis
movement was given to the lens through a program after each pass in order to obtain the
required depth. The whole system was monitored using a computer vision system.
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A combined methodology based on RSM-ANN-GA approach was adopted for multi-
parametric study of the laser turning process for micro-grooving operation on the selected
specimen. Design of experiments was utilized for conducting the laser-turned micro-
grooving operation, and the responses from different parametric combinations were
employed for ANN development and subsequent deployment of GA for the optimized
minimum deviations. The selected process parameters along with their ranges of values
are specified in Table 9. Using experimental results, three RSM-based equations were
developed for deviation in upper width (Yuw), deviation in lower width (Y1) and
deviation in depth (Yq4). The target output was set at 0.2 mm and the deviations were
recorded accordingly.

Table 9. Process parameters and their settings for example 2

. Levels
Parameter Unit Symbol

2 -1 0 1 2
Air pressure N/mm? X1 0.03 0.08 0.13 0.18 0.23
Lamp current A X2 13 16 19 22 25
Pulse frequency | kHz X3 1 2 3 4 5
Pulse width % X4 2 4 6 8 10
Cutting speed rpm Xs 7 12 17 22 27

Y= —0.00376 — 0.0169x;— 0.00251x, — 0.00288x; + 0.00048x4 + 0.00185xs +
0.00678x1* + 0.00232x,> + 0.00276x3> — 0.00012x4* + 0.00207xs> + 0.00004x1x> —
0.00134x1x3 + 0.00188x1x4 — 0.00225x1x5 — 0.00149x2x3 — 0.00081x2x4 — 0.00052xx5 +
0.00114x3x4 — 0.00262x3x5 + 0.0012x4x5 (5)

Y= 0.01857 — 0.0133x; — 0.00247x2 — 0.00268x3 + 0.0012x4 — 0.00391x5+ 0.00299x;>
+ 0.002243622— 0.00137)632 — 0.00122)642 + 0.000513652 + 0.00235x1x> — 0.00122x1x3 —
0.00168x1x4 + 0.00197x1x5 — 0.00197x2x3 — 0.00175x2x4 + 0.00166x2x5 — 0.0078x3x4 —
0.00211x3x5+ 0.00378x4x5 (6)

Ya=0.01265 — 0.0251x; — 0.00263x>+ 0.00451x3 + 0.00479xs— 0.00229x5+ 0.00338x,>
+ 0.0038x2"— 0.00168x3> + 0.00157x4> — 0.00112xs> — 0.00214x1x> — 0.00472x1x3 —
0.00264x1x4 + 0.0026x1x5 — 0.00035x2x3 — 0.00314x2x4 — 0.00365x2x5— 0.00425x3%4 +
0.00006x3x5+ 0.00393x4x5 @)

Dhupal et al. [26] applied the traditional GA technique to optimize those responses
and for multi-objective optimization, obtained values of —0.0101, 0.0098 and —0.0069
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mm respectively for upper width, lower width and depth deviations with the parametric
settings as lamp current = 19 A, pulse frequency =3.2 kHz, pulse width = 6% of duty
cycle, air pressure = 0.13 N/mm® and cutting speed = 22 rpm. The multi-objective
optimization results using SFLA are provided in Table 10 and compared with those
derived while applying the traditional GA technique. For multi-objective optimization,

Y+ ]+ |2

uw, +
optimization problem is to simultaneously minimize all the considered deviations in

, since the aim of this

the objective function is set as minimization of z=

upper width, lower width and depth.

Table 10. Multi-objective optimization results for example 2

. Process parameters Responses
Technique
X1 |x |xs X4 Xs Yuw Yiw Ya
GA 19 132 |6 0.13 |22 -0.01010 {0.00980 [-0.00690
SFLA 14.5 |23 |4.72 [0.805 |23.75 |0.00017 |-0.00004 |0.00041

| L 2.0 ©SFLA
Cwpal ot al [26] . Dewpal ot al (26

 (mm)

¥, (mm)

Y

¥ {mm)
¥, immi)

Figure 8. Variation in upper width deviation with respect to different process parameters.
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From Table 10, it becomes quite evident that SFLA excels over the traditional GA
technique while providing better optimal solutions. The scatter plots developed showing
the changes of the considered deviations with respect to varying values of five process
parameters are depicted in Figures 8-10. Since no parameter is held constant here, unlike
in response surfaces, scatter plots better provide the overall trend of the responses for
different process parameters. Since all the considered deviations need to be minimized, it
is apparent from these scatter plots that maximum cluster of points are concentrated near
the zero deviation, demonstrating high convergence rate of SFLA.

SFLA * SFLA
0.06) " = ——— Dhupal et al. [26] . 3 —— Dhupal et al [26]

004 006 008 010 072 014 076 078 020 022 4 18 18 0 7] =

Alr pressure (in N/mm?) Lamp current (in A)

* SFLA * SFLA
. —— Dhupal et al. [26) —
— R P 126] el . ) Dhupal et al. [26]

Pulse frequency (in kHz) Pulse width (in %)

* SFLA
—— Dhupal
o8 ) Dhupal et al [26]

Cutting speed (in rpm)

Figure 9. Variation in lower width deviation with respect to different process parameters.
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Figure 10. Variation in depth deviation with respect to different process parameters.

CONCLUSION

In this chapter, parametric optimization of two laser beam machining processes are
carried out employing an almost novel meta-heuristic approach in the form of shuffled
frog leaping algorithm. The results derived for single as well as and multi-objective
optimization using SFLA are observed to be better when compared to other algorithms,
like GA, ABC, ACO, PSO etc. The calculated mean and standard deviation values are
utilized so as differentiate between the performance of different algorithms with respect
to the repeatability of the algorithm towards attaining the optimal solutions in successive
runs. It is evident that SFLA is successful in providing consistent results in successive
runs. In order to investigate the effects of various algorithmic parameters of SFLA on
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solution accuracy, experiments are also conducted which show that the sample size in this

algorithm plays a significant role in obtaining better results. The values for maximum

step size, sub-memeplex size and number of intra-memeplex evolutions are also supposed

to be influential for the success of SFLA. The successful application of this algorithm in

optimizing responses of other non-traditional machining processes, like wire electrical

discharge machining, plasma arc machining, water and abrasive water jet machining etc.

may be the direction of future research works.
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